Cold flow of estradiol transdermal systems: influence of drug loss on the in vitro flux and drug transfer across human epidermis.

Int J Pharm

Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:

Published: December 2014

The objective was to quantify drug loss due to cold flow (CF) in marketed estradiol transdermal drug delivery systems (TDDS), and study its influence on the in vitro flux and drug transfer across contacting skin. TDDS samples (products-A and B) were induced with CF at 25 and 32°C/60% RH by applying 1-kg force for 72h. CF was measured as percent dimensional change and amount of drug loss/migration in CF region. In vitro drug permeation studies were conducted across human epidermis from TDDS excluding CF region, and CF region alone against control (without CF). In both products, significantly higher percentage of CF (dimensional change and drug migration) was observed at 32°C compared to 25°C. In vitro flux from both products excluding CF region either at 25 or 32°C was the same, but significantly lower compared to control. Drug transferred from CF region of product-A after 8h was the same at 25 and 32°C, but significantly higher in product-B. Flux from both products together with CF region at 32°C was significantly lower than that observed at 25°C. Results showed that excessive CF at storage (25°C) and clinical usage (32°C) conditions may have implications on product performance and safety of estradiol TDDS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2014.10.013DOI Listing

Publication Analysis

Top Keywords

vitro flux
12
drug
9
cold flow
8
estradiol transdermal
8
drug loss
8
flux drug
8
drug transfer
8
human epidermis
8
dimensional change
8
excluding region
8

Similar Publications

Stable-isotope resolved metabolomics (SIRM) is a powerful approach for characterizing metabolic states in cells and organisms. By incorporating isotopes, such as C, into substrates, researchers can trace reaction rates across specific metabolic pathways. Integrating metabolomics data with gene expression profiles further enriches the analysis, as we demonstrated in our prior study on glioblastoma metabolic symbiosis.

View Article and Find Full Text PDF

Role of nasal microbiota in regulating host anti-influenza immunity in dogs.

Microbiome

January 2025

Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Background: Numerous studies have confirmed a close relationship between the pathogenicity of influenza and respiratory microbiota, but the mechanistic basis for this is poorly defined. Also, the majority of these studies have been conducted on murine models, and it remains unclear how far these findings can be extrapolated from murine models to other animals. Considering that influenza A virus is increasingly recognized as an important canine respiratory pathogen, this study investigated the cross-talk between nasal and lung tissues mediated by microbes and its association with influenza susceptibility in a beagle dog model.

View Article and Find Full Text PDF

In the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.

View Article and Find Full Text PDF

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!