Intestinal fatty acid binding protein (IFABP) is an intracellular lipid binding protein whose specific functions within the cell are still uncertain. An abbreviated version of IFABP encompassing residues 29-126, dubbed Δ98Δ is a stable product of limited proteolysis with clostripain of holo-IFABP. Cumulative evidence shows that Δ98Δ adopts a stable, monomeric and functional fold, with compact core and loose periphery. In agreement with previous results, this abridged variant indicates that the helical domain is-not necessary to preserve the general topology of IFABP's β-barrel and that the helix-turn-helix motif is a fundamental element of the portal region involved in ligand binding and protein-membrane interactions. Results presented here suggest that Δ98Δ binds fatty acids with affinities lower than IFABP but higher than those shown by previous helix-less variants, shows a 'diffusional' fatty acid transfer mechanism and it interacts with artificial membranes. This work highlights the importance of the β-barrel of IFABP for its specific functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2014.09.022 | DOI Listing |
Hepatol Commun
November 2024
Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, UK.
Background: The Kasai portoenterostomy (KPE) aims to re-establish bile flow in biliary atresia (BA); however, BA remains the commonest indication for liver transplantation in pediatrics. Gut microbiota-host interplay is increasingly associated with outcomes in chronic liver disease. This study characterized fecal microbiota and fatty acid metabolites in BA.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
Purpose Of The Review: Mounting evidence indicates that individuals with chronic obstructive pulmonary disease (COPD) face a heightened risk of severe outcomes upon contracting coronavirus disease 2019 (COVID-19). Current medications for COVID-19 often carry side effects, necessitating alternative therapies with improved tolerance. This review explores the biological mechanisms rendering COPD patients more susceptible to severe COVID-19 and investigates the potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in mitigating the severity of COVID-19 in COPD patients.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China.
Two Gram-stain-negative, motile, non-spore-forming, aerobic or facultative anaerobic and short rod-shaped bacterial strains, 25B02-3 and BH-R2-4, were isolated from surface seawater collected from the Bering Sea and Chukchi Sea, respectively. The 16S rRNA gene sequences of the two strains were identical. The phylogenetic analysis of the 16S rRNA gene sequences indicated that they were related to the genus and shared 99.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
Five aerobic, Gram-stain-negative bacterial strains, designated as C3-2-a3, B3-2-R+30, C3-2-a4, C3-2-M3 and C3-2-M8, were isolated from the coastal soil of LungmuCo Lake in the Tibet Autonomous Region, PR China. Phylogenetic analyses based on 16S rRNA genes and genomes indicated that these isolates belonged to the genus and showed a high similarity to LNNU 24178 (99.01%), RD2P54 (98.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!