Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

PLoS One

Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore.

Published: September 2015

Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195691PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109854PLOS

Publication Analysis

Top Keywords

adipose tissue
40
laminin α4
16
tissue expansion
12
weight gain
12
adipose
10
tissue
10
function adipose
8
tissue mass
8
depot-specific manner
8
laminin
5

Similar Publications

Fibrous dysplasia is a slow-progressing benign condition characterized by abnormal bone formation that leads to some skeletal disorders. Although some of the fibrous dysplasia have unusual clinical and radiographic features that can lead to a challenging diagnosis, most lesions reveal an expansile bone defect due to cortex thinning. This report presented a case of monostotic fibrous dysplasia of a 43-year-old woman with involvement of the right maxillary jaw and sinuses, which indicated unusual histopathological features.

View Article and Find Full Text PDF

Production of alternative proteins is crucial for the development of future protein resources. This study explored the creation of sustainable animal resources by combining extrusion molding and three-dimensional (3D) printing technologies. Extrusion effectively organizes vegetable proteins at high temperatures and pressures to replicate meat-like textures, and high-moisture extrusion successfully mimics the fiber structure of conventional meat.

View Article and Find Full Text PDF

High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration.

Mater Today Bio

February 2025

Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China.

Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores.

View Article and Find Full Text PDF

Background: Deep learning (DL)-based adipose tissue segmentation methods have shown great performance and efficacy for adipose tissue distribution analysis using magnetic resonance (MR) images, an important indicator of metabolic health and disease. The aim of this study was to evaluate the reproducibility of whole-body adipose tissue distribution analysis using proton density fat fraction (PDFF) images at different MR strengths.

Methods: A total of 24 volunteers were imaged using both 1.

View Article and Find Full Text PDF

Background: Rapid kilovolt (kV)-switching dual-energy computed tomography (DECT) has been increasingly applied to the measurement of lumbar spine bone mineral density (BMD) in humans and animal models. The objective of this study was to investigate the optimal parameters for the measurement of vertebral BMD. The BMD of the spinal model was measured by means of DECT in combination with different noise index (NI) and preset adaptive statistical iterative reconstruction Veo (ASiR-V) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!