Heptapeptide Semax, encompassing the sequence 4-7 of N-terminal domain of the adrenocorticotropic hormone (ACTH) and a C-terminal Pro-Gly-Pro tripeptide, belongs to a short regulatory peptides family. This compound has been found to affect learning processes and to exert marked neuroprotective activities on cognitive brain functions. Dys-homeostasis of metal ions is involved in several neurodegenerative disorders and growing evidences have showed that brain is a specialized organ able to concentrate metal ions. In this work, the metal binding ability and protective activity of Semax and its metal complexes were studied. The equilibrium study clearly demonstrated the presence of three complex species. Two minor species [CuL] and [CuLH-1]- co-exist together with the [CuLH-2]2- in the pH range from 3.6 to 5. From pH5 the [CuLH-2]2- species becomes predominant with the donor atoms around copper arranged in a 4N planar coordination mode. Noteworthy, a reduced copper induced cytotoxicity was observed in the presence of Semax by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on a SHSY5Y neuroblastoma and RBE4 endothelial cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2014.09.008 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.
View Article and Find Full Text PDFChemistry
January 2025
Wuhan University of Technology - Mafangshan Campus: Wuhan University of Technology, School of Material Science and Engineeringl, CHINA.
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Faculty of Engineering & Technology, Marwadi University, Rajkot-Morbi Road, Rajkot 360003, Gujarat, India.
Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy.
Heavy metals are life-threatening pollutions because of their great toxicity, long-term persistence in nature and their bioaccumulation in living organisms. In this work, we performed multivariate curve resolution-alternating least squares analysis of UV-Vis raw spectra received by a colorimetric sensor constructed on mercaptoundecanoic acid functionalized silver nanoparticles (AgNPs@11MUA) to detect Cd, Cu, Mn, Ni, and Zn in water. This combined approach allowed the rapid identification and quantification of multiple heavy metals and showed adequate sensitivity and selectivity, thus representing a promising analytical and computational method for both laboratory and field applications such as environmental safety and public health monitoring.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
Understanding the adsorption behavior of intermediates at interfaces is crucial for various heterogeneous systems, but less attention has been paid to metal species. This study investigates the manipulation of Co spin states in ZnCoO spinel oxides and establishes their impact on metal ion adsorption. Using electrochemical sensing as a metric, we reveal a quasi-linear relationship between the adsorption affinity of metal ions and the high-spin state fraction of Co sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!