Sulfonation pathway inhibitors block reactivation of latent HIV-1.

Virology

Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA. Electronic address:

Published: December 2014

Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392775PMC
http://dx.doi.org/10.1016/j.virol.2014.08.016DOI Listing

Publication Analysis

Top Keywords

sulfonation pathway
12
transcription initiation
12
inhibitors block
8
latently infected
8
reactivation latency
8
sulfonation
4
inhibitors
4
pathway inhibitors
4
reactivation
4
block reactivation
4

Similar Publications

Synergetic degradation of PFOS by HALT conditions enhanced by Fe-based amorphous alloys.

J Hazard Mater

December 2024

State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.

Global concern over per- and polyfluoroalkyl substances (PFASs), especially perfluorooctane sulfonate (PFOS), disposal prompts the search for effective degradation methods. Subcritical water hydrothermal treatment shows promise but suffers from unclear degradation pathways, hindering engineering application design due to unknown intermediate products. This study introduces Fe-based amorphous alloy to enhance the subcritical water hydrothermal degradation of PFOS, achieving a degradation rate of approximately 85 % under optimized conditions of 325 °C and 1 M sodium bicarbonate (NaHCO₃), compared to 56 % without the alloy.

View Article and Find Full Text PDF

Background: Erdheim-Chester disease (ECD) is a rare form of non-Langerhans cell histiocytosis with diverse clinical manifestations, often associated with mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. BRAF and KRAS mutations, which are driver mutations of oncogenes, participate in the same signaling pathway (MAPK/ERK pathway) and are usually mutually exclusive. We report a case of ECD with concurrent BRAF and KRAS mutations treated using BRAF and MEK inhibitors.

View Article and Find Full Text PDF

Nucleocapsid protein (N) of SARS-CoV-2 is a multivalent protein, which is responsible for viral replication, assembly, packaging and modulates host immune response. In this study, we report conformational measurements of N protein at different pH by observing transition in secondary and tertiary structural contents by biophysical and computational approaches. Spectroscopic measurements revealed that N protein loses its secondary and tertiary structure at extreme acidic pH while maintaining its native conformation at mild acidic and alkaline pH.

View Article and Find Full Text PDF

Novel approach to alleviate lupus nephritis: targeting the NLRP3 inflammasome in CD8CD69CD103 T cells.

J Transl Med

December 2024

Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, P. R. China.

Background: Renal CD8 tissue-resident memory T (T) cells display prolonged survival and activity in lupus nephritis (LN), exacerbating renal pathology. NLRP3 regulates the T cell response. This study explored the impact of NLRP3 inflammasome activity on the regulatory functions of T cells in LN.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a severe stroke subtype with high mortality and limited therapeutic options. The blood-brain barrier (BBB) breakdown post-ICH exacerbates secondary brain injury, highlighting the need for targeted therapies to preserve the BBB integrity. We aim to investigate the role of the Sphk1/S1P pathway in BBB breakdown following ICH and to evaluate the therapeutic potential of Sphk1 inhibition in mitigating this breakdown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!