Fully relativistic self-consistent field under a magnetic field.

Phys Chem Chem Phys

Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.

Published: June 2015

We present a gauge-invariant implementation of the four-component Dirac-Hartree-Fock method for simulating the electronic structure of heavy element complexes in magnetic fields. The additional cost associated with the magnetic field is shown to be only 10-13% of that at zero field. The Dirac-Hartree-Fock wave function is constructed from gauge-including atomic orbitals. The so-called restricted magnetic balance is used to generate 2-spinor basis functions for the small component. The molecular integrals for the Coulomb and Gaunt interactions are computed using density fitting. Our efficient, parallel implementation allows for simulating the electronic structure of molecules containing more than 100 atoms with a few heavy elements under magnetic fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp04027aDOI Listing

Publication Analysis

Top Keywords

magnetic field
8
simulating electronic
8
electronic structure
8
magnetic fields
8
magnetic
5
fully relativistic
4
relativistic self-consistent
4
field
4
self-consistent field
4
field magnetic
4

Similar Publications

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Hereby inviting young rising stars in chest radiology in Japan for contributing what they are working currently, we would like to show the potentials and directions of the near future research trends in the research field. I will provide a reflection on my own research topics. At the end, we also would like to discuss on how to choose the themes and topics of research: What to do or not to do? We strongly believe it will stimulate and help investigators in the field.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Atomically precise synthesis of graphene nanostructures on semiconductors and insulators has been a formidable challenge. In particular, the metallic substrates needed to catalyze cyclodehydrogenative planarization reactions limit subsequent applications that exploit the electronic and/or magnetic structure of graphene derivatives. Here, we introduce a protocol in which an on-surface reaction is initiated and carried out regardless of the substrate type.

View Article and Find Full Text PDF

NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!