Developing a reliable and cost-effective miniaturized electroanalysis tool is of vital importance for cell electrochemical analysis. In this work, a novel mini-electrochemical system has been constructed for trace detection of cell samples. The mini-electrochemical system was constructed by integrating a pencil graphite modified by threonine (PT/PGE) as working electrode, an Ag/AgCl (Sat'd) as reference electrode, platinum wire as counter electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system not only saved dramatically usage of samples from 500 μL in traditional electrochemical system to 10 μL, but also possessed an adjustable active surface area by changing the length of PT/PGE immersed into the cell suspension from 3mm to 15 mm, and the linear equation was ipa = 2.25 l-2.64 (R(2) = 0.990). The system was successfully used in detection of MCF-7 cells, and a nonlinear exponent relationship between peak current and the cell number range from 3.0 × l0(3) to 7.0 × l0(6) cells mL(-1) was established firstly with the index equation ipa = 59.557 e (-C/1.709)-71.486 (R(2) = 0.954). Finally, the system was used for evaluating the sensitivity of cyclophosphamide on MCF-7 cell, and the result was corresponded well with that of MTT assay. The proposed system is sufficiently simple, cheap and easy operated, and could be applied in electrochemical detection of other biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2014.09.086DOI Listing

Publication Analysis

Top Keywords

mini-electrochemical system
16
pencil graphite
8
system constructed
8
equation ipa
8
system
7
cell
6
mini-electrochemical
4
system integrated
4
integrated micropipet
4
micropipet pencil
4

Similar Publications

High-Throughput Automatic Laser Printing Strategy toward Cost-effective Portable Integrated Urea Tele-Monitoring System.

Small Methods

March 2024

Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China.

A portable sweat urea sensing system is a promising solution to satisfy the booming requirement of kidney function tele-monitoring. However, the complicated manufacturing route and the cumbersome electrochemical testing system still need to be improved to develop the urea point-of-care testing (POCT) and tele-monitoring devices. Here, a universal technical route based on a high-throughput automatic laser printing strategy for fabricating the portable integrated urea monitoring system is proposed.

View Article and Find Full Text PDF

A novel mini-electrochemical system has been developed for evaluating cytotoxicity of anticancer drugs based on trace cell samples. The mini-electrochemical system was integrated by using pencil graphite modified with threonine as working electrode, an Ag/AgCl reference electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system dramatically reduces sample volumes from 500 μL in a traditional electrochemical system to 10 μL, and exhibits excellent electrocatalytic activity toward oxidation of purine from MCF-7 cells due to increased sensitivity provided by threonine.

View Article and Find Full Text PDF

Developing a reliable and cost-effective miniaturized electroanalysis tool is of vital importance for cell electrochemical analysis. In this work, a novel mini-electrochemical system has been constructed for trace detection of cell samples. The mini-electrochemical system was constructed by integrating a pencil graphite modified by threonine (PT/PGE) as working electrode, an Ag/AgCl (Sat'd) as reference electrode, platinum wire as counter electrode and a micropipet tip as electrochemical cell.

View Article and Find Full Text PDF

This paper presents the development of a mini-electrochemical detector for microchip electrophoresis. The small size (3.6 x 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!