The new, unsymmetrical dithiocarbamate ligands, KS2CN(CH2CH═CH2)Me and KS2CN(CH2C≡CH)Me, are formed from the respective amines on reaction with KOH and carbon disulfide. The homoleptic complexes [Ni{S2CN(CH2CH═CH2)Me}2] and [M{S2CN(CH2C≡CH)Me}2] (M = Ni, Pd, Pt) are formed on reaction with suitable metal precursors. Conversion between the two pendant functionalities was confirmed by hydrogenation of [Ni{S2CN(CH2C≡CH)Me}2] to yield [Ni{S2CN(CH2CH═CH2)Me}2]. The monodithiocarbamate compounds of group 8, 10, and 11 metals, [Ru{S2CN(CH2CH═CH2)Me}(dppm)2](+), [Ru(CH═CHC6H4Me-4){S2CN(CH2CH═CH2)Me}(CO)(PPh3)2], [Ni{S2CN(CH2CH═CH2)Me}(dppp)](+), and [Au{S2CN(CH2CH═CH2)Me}(PPh3)] were formed successfully. Using KS2CN(CH2C≡CH)Me, the complex [Ru{S2CN(CH2C≡CH)Me}(dppm)2](+) was obtained from cis-[RuCl2(dppm)2]. One palladium example, [Pd{S2CN(CH2C≡CH)Me}(PPh3)2](+), was also isolated in low yield. However, under the typical conditions employed, a rearrangement reaction prevented isolation of further group 10 propargyl-dithiocarbamate products. Over the extended reaction time required, Me(HC≡CCH2)NCS2(-) was found to undergo a remarkable, atom-efficient cyclization to form the thiazolidine-2-thione, H2C═CCH2N(Me)C(═S)S, in high yield, with MeC═CHN(Me)C(═S)S as the minor product. The reactivity of the pendant triple bonds in [Ni{S2CN(CH2C≡CH)Me}2] was probed in the reaction with [RuH(CO)(S2P(OEt)2)(PPh3)2] to form the trimetallic example [Ni{S2CN(Me)CH2CH═CHRu(CO)(S2P(OEt)2)(PPh3)2}2], while the copper(I) catalyzed reaction with benzylazide yielded the triazole product, [Ni{S2CN(Me)CH2(C2HN3)Bz}2]. KS2CN(CH2C≡CH)Me was also used to prepare the gold nanoparticles, Au@S2CN(CH2C≡CH)Me. Structural studies are reported for [Ru(CH═CHC6H4Me-4){S2CN(CH2CH═CH2)Me}(CO)(PPh3)2] and [Ru{S2CN(CH2C≡CH)Me}(dppm)2]PF6.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic502015cDOI Listing

Publication Analysis

Top Keywords

unsymmetrical dithiocarbamate
8
dithiocarbamate ligands
8
reaction
6
multimetallic complexes
4
complexes functionalized
4
functionalized nanoparticles
4
nanoparticles based
4
based unsymmetrical
4
ligands allyl
4
allyl propargyl
4

Similar Publications

A metal, ligand and solvent-free three component reaction of 1-aryl-1,3-butadienes, CS and amine has been developed. In this process, readily available CS and secondary amines were used for C-N and C-S bonds giving allyl dithiocarbamates with notable Markovnikov selectivity, mild reaction conditions, simple operation and compatibility with various functional groups (37 examples). This is first case of dithiocarbamic acid addition to an unsymmetrical 1,3-diene system.

View Article and Find Full Text PDF

Cascade Synthesis in Water: Michael Addition/Hemiketalization/Retro-Claisen Fragmentation Catalyzed by CatAnionic Vesicular Nanoreactor from Dithiocarbamate.

Chem Asian J

October 2024

Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

N,N-didodecylammonium N,N-didodecyldithiocarbamate (AmDTC-CC) underwent self-assembly to form a CatAnionic vesicular nanoreactor in water. AmDTC-CC can be readily prepared by condensation between N,N-didodecylamine and carbon disulfide. Previously, the cascade Michael addition/hemiketalization/retro-Claisen fragmentation was reported, but it required petroleum-based organic solvents as reaction media.

View Article and Find Full Text PDF

Synthesis and Properties of Dithiocarbamate-Linked Acenes.

Org Lett

January 2017

Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.

A small set of unsymmetrically substituted acene derivatives containing either aniline or dithiocarbamate moieties was synthesized. A stepwise, one-pot procedure was used to transform appropriate acenequinones to aniline-linked acenes in one step with moderate yields. A heretofore-unreported carbon disulfide activation process involving the formation of a trialkylammonium dithiocarbamate intermediate was found to be essential to convert these acene anilines to acene dithiocarbamates.

View Article and Find Full Text PDF

Reactions of a cerium(iii) amide with heteroallenes: insertion, silyl-migration and de-insertion.

Chem Commun (Camb)

July 2016

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104, USA.

Reactions of Ce[N(SiMe3)Ph(F)]3 (-Ph(F) = pentafluorophenyl) toward small molecules of the type E1[double bond, length as m-dash]C[double bond, length as m-dash]E2 (E1, E2 = O, S, NR), including carbon disulfide, carbodiimide, carbon dioxide, isocyanate and isothiocyanate are reported, resulting in distinct products, including cerium(iii) dithiocarbamate, cerium(iii) guanidinate, isocyanates and unsymmetric carbodiimides. These reactions were rationalized as three consecutive stages of the same reaction pathway: insertion, silyl-migration and de-insertion.

View Article and Find Full Text PDF

The new, unsymmetrical dithiocarbamate ligands, KS2CN(CH2CH═CH2)Me and KS2CN(CH2C≡CH)Me, are formed from the respective amines on reaction with KOH and carbon disulfide. The homoleptic complexes [Ni{S2CN(CH2CH═CH2)Me}2] and [M{S2CN(CH2C≡CH)Me}2] (M = Ni, Pd, Pt) are formed on reaction with suitable metal precursors. Conversion between the two pendant functionalities was confirmed by hydrogenation of [Ni{S2CN(CH2C≡CH)Me}2] to yield [Ni{S2CN(CH2CH═CH2)Me}2].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!