Deep-sea fishes provide a unique opportunity to study the physiology and evolutionary adaptation to extreme environments. We carried out a high throughput sequencing analysis on a 454 GS-FLX titanium plate using unnormalized cDNA libraries from six tissues of A. carbo. Assemblage and annotations were performed by Newbler and InterPro/Pfam analyses, respectively. The assembly of 544,491 high quality reads provided 8,319 contigs, 55.6% of which retrieved blast hits against the NCBI nonredundant database or were annotated with ESTscan. Comparison of functional genes at both the protein sequences and protein stability levels, associated with adaptations to depth, revealed similarities between A. carbo and other bathypelagic fishes. A selection of putative genes was standardized to evaluate the correlation between number of contigs and their normalized expression, as determined by qPCR amplification. The screening of the libraries contributed to the identification of new EST simple-sequence repeats (SSRs) and to the design of primer pairs suitable for population genetic studies as well as for tagging and mapping of genes. The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182897PMC
http://dx.doi.org/10.1155/2014/267482DOI Listing

Publication Analysis

Top Keywords

transcriptome deep-sea
4
deep-sea black
4
black scabbardfish
4
scabbardfish aphanopus
4
carbo
4
aphanopus carbo
4
carbo perciformes
4
perciformes trichiuridae
4
trichiuridae tissue-specific
4
tissue-specific expression
4

Similar Publications

Ascorbic acid transporter MmSLC23A2 functions to inhibit apoptosis via ROS scavenging in hard clam (Mercenaria mercenaria) under acute hypo-salinity stress.

Int J Biol Macromol

January 2025

Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Solute carrier family 23 (SLC23) mediates cellular uptake of ascorbic acid, a crucial antioxidant protecting organisms against oxidative stress. Despite advances in understanding SLC23 in mammals, its physiological roles in bivalves remain poorly understood. Notably, euryhaline bivalves exhibit a significant expansion and positive selection of SLC23, highlighting the need for deeper investigation.

View Article and Find Full Text PDF

Community Structure and Biodiversity of Active Microbes in the Deep South China Sea.

Microorganisms

November 2024

Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

The deep ocean harbors a group of highly diversified microbes, while our understanding of the active microbes that are real contributors to the nutrient cycle remains limited. In this study, we report eukaryotic and prokaryotic communities in ~590 m and 1130 m depths using 16S and 18S rRNA Illumina reads (miTags) extracted from 15 metagenomes (MG) and 14 metatranscriptomes (MT). The metagenomic 16S miTags revealed the dominance of Gammaproteobacteria, Alphaproteobacteria, and Nitrososphaeria, while the metatranscriptomic 16S miTags were highly occupied by Gammaproteobacteria, Acidimicrobiia, and SAR324.

View Article and Find Full Text PDF

Octocorals, vital components of reef ecosystems, inhabit various marine environments across diverse climate zones, spanning from tropical shallows to frigid deep-sea regions. Certain octocoral species, notably Lobophytum and Sinularia, are particularly intriguing due to their production of diverse metabolites, warranting continuous investigation. Although octocorals played the roles in coral ecosystems, the studies are rare in comparison to scleractinian corals, especially in transcriptomic and genomic data.

View Article and Find Full Text PDF

Revealing the metabolic potential and environmental adaptation of nematophagous fungus, , derived from hadal sediment.

Front Microbiol

November 2024

Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China.

Article Synopsis
  • Fungi in deep-sea habitats, like the Mariana Trench, possess unique metabolic capabilities that enable them to thrive under extreme conditions, but research on their activities is limited.
  • Researchers studied a specific filamentous fungus, FDZ8Y1, demonstrating its tolerance to high hydrostatic pressure (HHP) and its potential for antibacterial, antitumor, and nematicidal activities.
  • Whole-genome sequencing and transcriptomic analysis revealed that FDZ8Y1 activates various metabolic pathways to adapt to HHP, highlighting its potential for discovering novel natural products and understanding fungal adaptation in extreme environments.
View Article and Find Full Text PDF

Integrated multi-approaches reveal unique metabolic mechanisms of Vestimentifera to adapt to deep sea.

Microbiome

November 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Vestimentiferan tubeworms are deep-sea colonizers, in which chemoautotrophic symbiosis was first observed. These animals are gutless and depend on endosymbiotic bacteria for organic compound synthesis and nutrition supply. Taxonomically, vestimentiferans belong to Siboglinidae and Annelida.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!