Animal models of endolymphatic hydrops (ELH) provide critical insight into the pathophysiology of Meniere's disease (MD). A new genetic murine model, called the Phex mouse, circumvents prior need for a time and cost-intensive surgical procedure to create ELH. The Phex mouse model of ELH, which also has X-linked hypophosphatemic rickets, creates a postnatal, spontaneous, and progressive ELH whose phenotype has a predictable decline of vestibular and hearing function reminiscent of human MD. The Phex mouse enables real-time histopathologic analysis to assess diagnostic and therapeutic interventions as well as further our understanding of ELH's adverse effects. Already the model has validated electrocochleography and cervical vestibular evoked myogenic potential as useful diagnostic tools. New data on caspase activity in apoptosis of the spiral ganglion neurons may help target future therapeutic interventions. This paper highlights the development of the Phex mouse model and highlights its role in characterizing ELH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193546 | PMC |
http://dx.doi.org/10.1007/s40136-014-0048-7 | DOI Listing |
Curr Res Pharmacol Drug Discov
October 2024
School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Mount Lebanon, Lebanon.
Biochem Biophys Res Commun
December 2024
Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
This study investigates the effects of microgravity on the differentiation and mineralization of IDG-SW3 osteocyte-like cells to understand the response of bone cells to microgravity and develop strategies to mitigate bone loss in astronauts. IDG-SW3 cells were cultured in collagen-coated dishes and subjected to a 3D clinostat to simulate microgravity 14 days after initiating differentiation. The static group remained under normal gravity.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
October 2024
Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Bone is a dynamic tissue that is constantly remodeled throughout adult life. Recently, it has been shown that bone turnover decreases shortly after food consumption. This process has been linked to the fermentation of non-digestible food ingredients such as inulin by gut microbes, which results in the production of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate.
View Article and Find Full Text PDFJ Bone Miner Res
October 2024
Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Hamburg, Germany.
Spermine synthase, encoded by the SMS gene, is involved in polyamine metabolism, as it is required for the synthesis of spermine from its precursor molecule spermidine. Pathogenic variants of SMS are known to cause Snyder-Robinson syndrome (SRS), an X-linked recessive disorder causing various symptoms, including intellectual disability, muscular hypotonia, infertility, but also skeletal abnormalities, such as facial dysmorphisms and osteoporosis. Since the impact of a murine SMS deficiency has so far only been analyzed in Gy mice, where a large genomic deletion also includes the neighboring Phex gene, there is only limited knowledge about the potential role of SMS in bone cell regulation.
View Article and Find Full Text PDFJBMR Plus
August 2024
Inserm, University of Bordeaux, BioTis Laboratory UMR 1026, Bordeaux, France.
Among bone cells, osteocytes are the most abundant, but also the most challenging to study because they are located inside a dense mineralized matrix. Due to their involvement in bone homeostasis, diverse tools are needed to understand their roles in bone physiology and pathology. This work was aimed at establishing a laser-assisted microdissection protocol to isolate osteocytes and analyze their gene expressions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!