Somatic cells are an important component naturally present in milk, and somatic cell count is used as an indicator of udder health and milk quality. The role of somatic cells in dairy processes and products is ill-defined in most studies because the role of these cells combines also the concomitance of physicochemical modifications of milk, bacterial count, and the udder inflammation in the presence of high somatic cell count. The aim of this review is to focus on the role of somatic cells themselves and of endogenous enzymes from somatic cells in milk, in dairy transformation processes, and in characteristics of final products overcoming biases due to other factors. The immune function of somatic cells in the udder defense and their protective role in milk will be primarily considered. Different characteristics of milk induced by various somatic cell counts, types, and their endogenous enzymes influencing directly the technological properties of milk and the final quality of dairy products will be discussed as well. By comparing methods used in other studies and eliminating biases due to other factors not considered in these studies, a new approach has been suggested to evaluate the effective role of somatic cells on dairy processes and products. In addition, this new approach allows the characterization of somatic cells and their endogenous enzymes and, in future research, will allow the clarification of mechanisms involved in the release of these components from somatic cells during dairy processes, particularly in cheese technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180028 | PMC |
http://dx.doi.org/10.1007/s13594-014-0176-3 | DOI Listing |
Cytotherapy
December 2024
Cancer Institute, University College London, London, UK. Electronic address:
The global changes from 2001 that elevated substantially modified cell therapies to the definition of "medicinal product" have been the catalyst for the dramatic expansion of the field to its current and future commercial success. Europe was the first to incorporate human somatic cells into drug legislation with the medicines directive of 2001 (2001/83/EC), which led to the development of the term "advanced therapy medicinal products" (ATMPs) to cover all substantially modified products, tissue-engineered products and somatic cells that are not substantially modified but that are used non-homologously. For convenience, I use the term "ATMPs" throughout this review.
View Article and Find Full Text PDFGenes Dev
December 2024
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany.
Illegal wildlife trade is a growing problem internationally. Poaching of animals not only leads to the extinction of populations and species but also has serious consequences for ecosystems and economies. This study introduces a molecular marker system that authorities can use to detect and substantiate wildlife trafficking.
View Article and Find Full Text PDFBMC Biol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.
Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!