Role of somatic cells on dairy processes and products: a review.

Dairy Sci Technol

INRA, UMR 1253, Science et Technologie du Lait et de l'Œuf, 65 rue de Saint Brieuc, F-35042 Rennes, France ; Agrocampus Ouest, UMR 1253, Science et Technologie du Lait et de l'Œuf, 65 rue de Saint Brieuc, 35042 Rennes, France.

Published: July 2014

Somatic cells are an important component naturally present in milk, and somatic cell count is used as an indicator of udder health and milk quality. The role of somatic cells in dairy processes and products is ill-defined in most studies because the role of these cells combines also the concomitance of physicochemical modifications of milk, bacterial count, and the udder inflammation in the presence of high somatic cell count. The aim of this review is to focus on the role of somatic cells themselves and of endogenous enzymes from somatic cells in milk, in dairy transformation processes, and in characteristics of final products overcoming biases due to other factors. The immune function of somatic cells in the udder defense and their protective role in milk will be primarily considered. Different characteristics of milk induced by various somatic cell counts, types, and their endogenous enzymes influencing directly the technological properties of milk and the final quality of dairy products will be discussed as well. By comparing methods used in other studies and eliminating biases due to other factors not considered in these studies, a new approach has been suggested to evaluate the effective role of somatic cells on dairy processes and products. In addition, this new approach allows the characterization of somatic cells and their endogenous enzymes and, in future research, will allow the clarification of mechanisms involved in the release of these components from somatic cells during dairy processes, particularly in cheese technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180028PMC
http://dx.doi.org/10.1007/s13594-014-0176-3DOI Listing

Publication Analysis

Top Keywords

somatic cells
36
role somatic
16
cells dairy
16
dairy processes
16
processes products
12
somatic cell
12
endogenous enzymes
12
somatic
11
cells
10
cell count
8

Similar Publications

The global changes from 2001 that elevated substantially modified cell therapies to the definition of "medicinal product" have been the catalyst for the dramatic expansion of the field to its current and future commercial success. Europe was the first to incorporate human somatic cells into drug legislation with the medicines directive of 2001 (2001/83/EC), which led to the development of the term "advanced therapy medicinal products" (ATMPs) to cover all substantially modified products, tissue-engineered products and somatic cells that are not substantially modified but that are used non-homologously. For convenience, I use the term "ATMPs" throughout this review.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Illegal wildlife trade is a growing problem internationally. Poaching of animals not only leads to the extinction of populations and species but also has serious consequences for ecosystems and economies. This study introduces a molecular marker system that authorities can use to detect and substantiate wildlife trafficking.

View Article and Find Full Text PDF

Evolutionary dynamics of mitochondrial genomes and intracellular transfers among diploid and allopolyploid cotton species.

BMC Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.

Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.

Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!