We pose the central problem of defining a measure of complexity, specifically for spatial systems in general, city systems in particular. The measures we adopt are based on Shannon's (in Bell Syst Tech J 27:379-423, 623-656, 1948) definition of information. We introduce this measure and argue that increasing information is equivalent to increasing complexity, and we show that for spatial distributions, this involves a trade-off between the density of the distribution and the number of events that characterize it; as cities get bigger and are characterized by more events-more places or locations, information increases, all other things being equal. But sometimes the distribution changes at a faster rate than the number of events and thus information can decrease even if a city grows. We develop these ideas using various information measures. We first demonstrate their applicability to various distributions of population in London over the last 100 years, then to a wider region of London which is divided into bands of zones at increasing distances from the core, and finally to the evolution of the street system that characterizes the built-up area of London from 1786 to the present day. We conclude by arguing that we need to relate these measures to other measures of complexity, to choose a wider array of examples, and to extend the analysis to two-dimensional spatial systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179993 | PMC |
http://dx.doi.org/10.1007/s10109-014-0202-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!