Recent insights into farnesoid X receptor in non-alcoholic fatty liver disease.

World J Gastroenterol

Jiao-Ya Xu, Zhong-Ping Li, Li Zhang, Guang Ji, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.

Published: October 2014

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is one of the most prevalent liver disorders worldwide. NAFLD can gradually progress to liver inflammation, fibrosis, cirrhosis and even hepatocellular carcinoma. However, the pathogenesis of NAFLD is complex, and no efficient pharmaceutic treatments have yet been established for NAFLD. Accumulating data have shown that the farnesoid X receptor (FXR) plays important roles not only in bile acid metabolism, but also in lipid and carbohydrate homeostasis, inflammatory responses, among others. In this review, we aim to highlight the role of FXR in the pathogenesis and treatment of NAFLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188900PMC
http://dx.doi.org/10.3748/wjg.v20.i37.13493DOI Listing

Publication Analysis

Top Keywords

farnesoid receptor
8
non-alcoholic fatty
8
fatty liver
8
liver disease
8
nafld
5
insights farnesoid
4
receptor non-alcoholic
4
liver
4
disease non-alcoholic
4
disease nafld
4

Similar Publications

Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh)

December 2024

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.

View Article and Find Full Text PDF

The intestinal microbiota comprises approximately 10-10 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes.

View Article and Find Full Text PDF

Regulation of bile acids and their receptor FXR in metabolic diseases.

Front Nutr

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.

High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.

View Article and Find Full Text PDF

Obeticholic acid aggravates liver fibrosis by activating hepatic farnesoid X receptor-induced apoptosis in cholestatic mice.

Chem Biol Interact

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. Electronic address:

Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment.

View Article and Find Full Text PDF

Obesity and its associated intestinal inflammatory responses represent a significant global challenge. (IF) is a dietary intervention demonstrating various health benefits, including weight loss, enhanced metabolic health, and increased longevity. However, its effect on the intestinal inflammation induced by high-fat diet (HFD) is still not fully comprehended.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!