The freerunning period () of the circadian pacemaker underlying the wheel-running activity rhythm of was found to be unaffected by the periods of environmental cycles (maternal and light/dark) under which the mice are raised. Mice born to mothers entrained to periods (T) of 28 or 20 h (ratio of light to dark of 14/10) and maintained on those cycle until beyond puberty showed only a temporary difference in freerunning period when placed into constant darkness. Such temporary 'after-effects ' of entrainment were shown, as had been previously, to occur in animals exposed to non-24-h cycles as adults only.After-effects on the ratio of activity to rest () were not even temporarily different in animals raised on T = 28 or T = 20.Rearing on T = 28 or T = 20 did not affect the abilities of animals to entrain to these cycles later in life.Measurements from young and old animals as well as remeasurement of the young animals later in their lives revealed several effects of age on the pacemaker: a) After-effects on freerunning period after T = 28 or T = 20 are not greater but last longer in older animals; b) Freerunning period is shorter in younger animals; and c) The ratio of activity to rest changes over time in constant darkness and is greater in young animals. Together these suggest that pacemaker 'plasticity' reflected in changes in and over time in constant darkness decreases with age.The length of gestation measured in 'real' time was the same in mice entrained to T = 28 or T = 20, demonstrating that gestation is not measured in circadian cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191870 | PMC |
http://dx.doi.org/10.1007/BF00609919 | DOI Listing |
Physiol Behav
January 2025
Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa; Mammal Research Institute, University of Pretoria, Hatfield, 0083, South Africa. Electronic address:
The genus Otomys exhibits diverse activity patterns in the field, making them ideal subjects for studying circadian biology. The Southern African vlei rat (Otomys auratus) has previously been categorised as diurnal or crepuscular, but also displays some nocturnal activity. This study aimed to confirm the temporal niche of vlei rats in a laboratory setting and examine changes in activity when provided with a running wheel.
View Article and Find Full Text PDFNeurobiol Sleep Circadian Rhythms
May 2025
Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, SP, Brazil.
Chronobiology experiments often reveal intriguing non-linear phenomena, which require mathematical models and computer simulations for their interpretation. One example is shown here, where the two circadian oscillators located in the eyes of the mollusk were isolated and measured . By maintaining one eye under control conditions and manipulating the period of the second eye, Page and Nalovic (1992) obtained a diversity of results, including synchronized and desynchronized eyes, associated to weak coupling and period differences.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
The adaptation to the daily 24-h light-dark cycle is ubiquitous across animal species and is crucial for maintaining fitness. This free-running cycle occurs innately within multiple bodily systems, such as endogenous circadian rhythms in clock-gene expression and synaptic plasticity. These phenomena are well studied; however, it is unknown if and how the 24-h clock affects electrophysiologic network function in vivo.
View Article and Find Full Text PDFPNAS Nexus
November 2024
Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
Phytomedicine
December 2024
Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China. Electronic address:
Background: Aristolochic acid I (AAI), an emerging biogenic contaminant widely present in Aristolochic plants, has been implicated in the progression of tubulointerstitial disease, known as aristolochic acid nephropathy (AAN). The circadian clock, a vital regulator of organ homeostasis, is susceptible to external chemical cues, including toxins. However, the reciprocal interactions between AAI and the circadian clock remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!