Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the non-thermal effects of electricity on anthocyanin degradation during ohmic heating of jaboticaba juice. For this, temperature profiles during conventional and ohmic heating processes were matched, and the degradation kinetics of anthocyanins were compared at temperatures ranging from 70 to 90°C. The monomeric anthocyanin content was quantified by UV-Visible spectroscopy using the pH-differential method. Anthocyanin degradation was fitted to a first-order model. The rate constants ranged from 1.7 to 7.5 × 10(-3)min(-1) and from 1.8 to 7.6 × 10(-3)min(-1) for ohmic and conventional heating, respectively. The analysis of variance (α=0.05) showed no significant differences between rate constants of the ohmic and conventional heating at the same temperatures. All kinetic and thermodynamic parameters evaluated showed similar values for both technologies. These results indicate that the presence of the oscillating electric field did not affect the degradation rates of anthocyanins during ohmic heating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2014.09.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!