Although beet and cane sugar sources have nearly identical chemical compositions, the sugars differ in their volatile profiles, thermal behaviors, and minor chemical components. Scientific evidence characterizing the impact of these differences on product quality is lacking. The objective of this research was to determine whether panelists could identify a sensory difference between product matrices made with beet and cane sugar sources. Sixty-two panelists used the R-index by ranking method to discern whether there was a difference between 2 brands of beet and 2 brands of cane sugars in regard to their aroma and flavor, along with a difference in pavlova, simple syrup, sugar cookies, pudding, whipped cream, and iced tea made with beet and cane sugars. R-index values and Friedman's rank sum tests showed differences (P < 0.05) between beet and cane sugars in regard to their aroma and flavor. Significant differences between the sugar sources were also identified when incorporated into the pavlova and simple syrup. No difference was observed in the sugar cookies, pudding, whipped cream, and iced tea. Possible explanations for the lack of difference in these products include: (1) masking of beet and cane sensory differences by the flavor and complexity of the product matrix, (2) the relatively small quantity of sugar in these products, and (3) variation within these products being more influential than the sugar source. The findings from this research are relevant to sugar manufacturers and the food industry as a whole, because it identifies differences between beet and cane sugars and product matrices in which beet and cane sugars are not directly interchangeable.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.12670DOI Listing

Publication Analysis

Top Keywords

beet cane
32
cane sugars
20
sugar sources
16
product matrices
12
matrices beet
12
cane sugar
12
beet
9
cane
9
sugar
9
sensory differences
8

Similar Publications

As a globally cultivated and economic crop, beets are particularly important in the cane sugar and feed industries. Beet pigments are among the most important natural pigments, while various chemical components in beets display beneficial biological functions. Phenolic substances and betalains, as the main bioactive compounds, determine the functional characteristics of beets.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on developing a non-invasive method using through-container spatial offset Raman spectroscopy (SORS) and machine learning techniques to detect exogenous sugar adulteration in UK honeys, which is usually complex and expensive to analyze.
  • - The researchers tested 17 types of natural honeys, spiked with different concentrations of rice and sugar beet syrups, and found that the Random Forest algorithm was the most accurate, misclassifying only 1% of pure samples and under 3.5% of adulterated samples.
  • - Additionally, SORS successfully differentiated between pure and adulterated heather honey with high accuracy, showing potential for rapid and effective honey authentication and sugar detection using this innovative technique.
View Article and Find Full Text PDF

H fast field-cycling and time-domain nuclear magnetic resonance relaxometry studies have been performed for 15 samples of sugar of different kinds and origins (brown, white, cane, beet sugar). The extensive data set, including results for crystal sugar and sugar/water mixtures, has been thoroughly analyzed, with a focus on identifying relaxation contributions associated with the solid and liquid fractions of the systems and non-exponentiality of the relaxation processes. It has been observed that H spin-lattice relaxation rates for crystal sugar (solid) vary between 0.

View Article and Find Full Text PDF

Background: Food adulteration is a global concern, whether it takes place intentionally or incidentally. In Canada, maple syrup is susceptible to being adulterated with cheaper syrups such as corn, beet, cane syrups, and many more due to its high price and economic importance.

Results: In this study, the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was investigated to detect maple syrups adulterated with 15 different sugar syrups at different concentration levels.

View Article and Find Full Text PDF

Sucrose, obtained from either sugar beet or sugarcane, is one of the main ingredients used in the food industry. Due to the same molecular structure, chemical methods cannot distinguish sucrose from both sources. More practical and affordable methods would be valuable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!