Lanthanide compounds show much higher energy barriers to magnetic relaxation than 3d-block compounds, and this has led to speculation that they could be used in molecular spintronic devices. Prototype molecular spin valves and molecular transistors have been reported, with remarkable experiments showing the influence of nuclear hyperfine coupling on transport properties. Modelling magnetic data measured on lanthanides is always complicated due to the strong spin-orbit coupling and subtle crystal field effects observed for the 4f-ions; this problem becomes still more challenging when interactions between lanthanide ions are also important. Such interactions have been shown to hinder and enhance magnetic relaxation in different examples, hence understanding their nature is vital. Here we are able to measure directly the interaction between two dysprosium(III) ions through multi-frequency electron paramagnetic resonance spectroscopy and other techniques, and explain how this influences the dynamic magnetic behaviour of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms6243DOI Listing

Publication Analysis

Top Keywords

magnetic relaxation
8
direct measurement
4
measurement dysprosiumiii···dysprosiumiii
4
dysprosiumiii···dysprosiumiii interactions
4
interactions single-molecule
4
single-molecule magnet
4
magnet lanthanide
4
lanthanide compounds
4
compounds higher
4
higher energy
4

Similar Publications

Water-Soluble Mn(III)-Porphyrins with High Relaxivity and Photosensitization.

Chem Biomed Imaging

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland.

Three water-soluble Mn(III)-porphyrin complexes with cationic pyridyl side groups bearing COOH- or OH-terminated carbon chains in the meta or para positions have been synthesized as probes for both magnetic resonance imaging (MRI) and photodynamic therapy (PDT). The complexes , , and are highly water-soluble, and their relaxivities range between 10 and 15 mM s, at 20-80 MHz and 298 K, 2-3 times higher than that of commercial Gd(III)-based agents. The complexes containing carboxylate () or alcoholic () side chains in the para position are endowed with higher relaxivities and have also shown efficient photoinduced DNA cleavage and singlet oxygen (O) generation.

View Article and Find Full Text PDF

Bioimaging probes based on carbon dots (CDs) can become a useful replacement for existing commercial probes, benefiting clinical diagnostics. While the development of dual-mode CD-based probes for magnetic resonance imaging (MRI), which provides the ability for photoluminescence (PL) detection at the same time, is ongoing, several challenges have to be addressed. First, most of the CD-based probes still emit at shorter wavelengths (blue/green spectral range), which is harmful to biological objects or have very low PL intensity in the biological window of tissue transparency (red/near-infrared spectral range).

View Article and Find Full Text PDF

measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.

View Article and Find Full Text PDF

Determination of the degree of sulfonation in cross-linked and non-cross-linked Poly(ether ether ketone) using different analytical techniques.

Heliyon

January 2025

Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.

The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.

View Article and Find Full Text PDF

Temperature-Dependent Magnetic Resonance Relaxation Behaviors in Porous Materials.

Phys Rev Lett

December 2024

University of New Brunswick, UNB MRI Centre, Department of Physics, Fredericton, New Brunswick, E3B 5A3, Canada.

We observe divergent temperature-dependent magnetic resonance relaxation behaviors across various brine-saturated porous materials. The paramagnetic and diamagnetic nature of the samples underlies these divergent behaviors. The temperature-dependent trends of the longitudinal T_{1} and transverse T_{2} relaxation times are systematically explained via distinct relaxation-diffusion regimes of Brownstein-Tarr theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!