A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Netrin/RGM receptor, Neogenin, controls adult neurogenesis by promoting neuroblast migration and cell cycle exit. | LitMetric

A comprehensive understanding of adult neurogenesis is essential for the development of effective strategies to enhance endogenous neurogenesis in the damaged brain. Olfactory interneurons arise throughout life from stem cells residing in the subventricular zone of the lateral ventricle. Neural precursors then migrate along the rostral migratory stream (RMS) to the olfactory bulb. To ensure a continuous supply of adult-born interneurons, precursor proliferation, migration, and differentiation must be tightly coordinated. Here, we show that the netrin/repulsive guidance molecule receptor, Neogenin, is a key regulator of adult neurogenesis. Neogenin loss-of-function (Neo(gt/gt)) mice exhibit a specific reduction in adult-born calretinin interneurons in the olfactory granule cell layer. In the absence of Neogenin, neuroblasts fail to migrate into the olfactory bulb and instead accumulate in the RMS. In vitro migration assays confirmed that Neogenin is required for Netrin-1-mediated neuroblast migration and chemoattraction. Unexpectedly, we also identified a novel role for Neogenin as a regulator of the neuroblast cell cycle. We observed that those neuroblasts able to reach the Neo(gt/gt) olfactory bulb failed to undergo terminal differentiation. Cell cycle analysis revealed an increase in the number of S-phase neuroblasts within the Neo(gt/gt) RMS and a significant reduction in the number of neuroblasts exiting the cell cycle, providing an explanation for the loss of mature calretinin interneurons in the granule cell layer. Therefore, Neogenin acts to synchronize neuroblast migration and terminal differentiation through the regulation of neuroblast cell cycle kinetics within the neurogenic microenvironment of the RMS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1861DOI Listing

Publication Analysis

Top Keywords

cell cycle
20
adult neurogenesis
12
neuroblast migration
12
olfactory bulb
12
receptor neogenin
8
calretinin interneurons
8
granule cell
8
cell layer
8
neuroblast cell
8
terminal differentiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!