Does information about sugar source influence consumer liking of products made with beet and cane sugars?

J Food Sci

Authors are with Dept. of Food Science and Human Nutrition, Univ. of Illinois, 905 S. Goodwin Ave, Urbana, IL, 61801, U.S.A.

Published: November 2014

Beet sugar contains an off-aroma, which was hypothesized to generate expectations on the acceptability of a product made with beet sugar. Thus, the objective of this study was to assess the impact of information about the sugar source (beet vs. cane) on the overall liking of an orange-flavored beverage. One hundred panelists evaluated an orange-flavored powdered beverage mix and beverage made with beet and cane sugars using a 5-phase testing protocol involving a tetrad test and hedonic ratings performed under blind and informed conditions. Tetrad test results indicated that there was a significant difference (P < 0.05) between the beverage mix made with beet sugar and cane sugar; however, no difference was found between the beverage made with beet sugar and cane sugar. Hedonic ratings revealed the significance of information conditions on the panelists evaluation of sugar (F = 24.67, P < 0.001); however, no difference in the liking was identified for the beverage mix or beverage. Average hedonic scores were higher under informed condition compared to blind condition for all products, possibly because labels tend to reduce uncertainty about a product. Results from this study are representative of the responses from the general population and suggest that they are not affected by sugar source information in a beverage product. Based on concerns with the use of beet sugar expressed in the popular press, there may be a subgroup of the population that has a preconceived bias about sugar sources due to their prior experiences and knowledge and, thus, would be influenced by labels indicating the sugar source used in a product.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.12668DOI Listing

Publication Analysis

Top Keywords

beet sugar
20
sugar source
16
sugar
13
beet cane
12
beverage mix
12
beet
8
beverage
8
mix beverage
8
beverage beet
8
tetrad test
8

Similar Publications

Introduction: Weeds are a major factor affecting crop yield and quality. Accurate identification and localization of crops and weeds are essential for achieving automated weed management in precision agriculture, especially given the challenges in recognition accuracy and real-time processing in complex field environments. To address this issue, this paper proposes an efficient crop-weed segmentation model based on an improved UNet architecture and attention mechanisms to enhance both recognition accuracy and processing speed.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Beet crops are highly vulnerable to pest infestations throughout their growth cycle, which significantly affects crop development and yield. Timely and accurate pest identification is crucial for implementing effective control measures. Current pest detection tasks face two primary challenges: first, pests frequently blend into their environment due to similar colors, making it difficult to capture distinguishing features in the field; second, pest images exhibit scale variations under different viewing angles, lighting conditions, and distances, which complicates the detection process.

View Article and Find Full Text PDF

Cooperation Between and for Carbendazim Degradation.

Microorganisms

December 2024

Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.

Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!