Yield progress in major German crops is generated mostly due to genetic improvement over the last 30 years. Comparison of trial-station with on-farm yield reveals considerable gaps that are widening over time. Yield progress of newly released varieties for 12 crops from official German trials over the period 1983 until 2012 was analysed to assess their value for cultivation and use (VCU). We paid special attention to dissect progress into a genetic and a non-genetic (agronomic) trend in order to quantify the contribution made by new varieties and by agronomic factors. In this study, we apply mixed models including regression components for genetic and agronomic trends. Ageing effects, depending on the difference of the actual testing year and the first year of testing of a particular variety, were estimated from the difference of fungicide and non-fungicide-treated trial pairs. Significant yield losses were found in all cereal crops due to assumed ageing effects. We compared national on-farm with official VCU trial yields with particular focus on whether gaps are widening over time. Results indicated a significant widening over time. In order to facilitate comparisons of results across crops, we calculated percent rates based on 1983 yield levels obtained from regression estimates. Most of the yield progress was generated by genetic improvement, and was linear showing no levelling-off. Ageing and selection effects need to be taken into account, because they may lead to overestimation of genetic trends. This study showed that contribution of agronomic factors is of minor importance in overall yield progress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236628PMC
http://dx.doi.org/10.1007/s00122-014-2402-zDOI Listing

Publication Analysis

Top Keywords

yield progress
16
widening time
12
genetic non-genetic
8
yield
8
on-farm yield
8
generated genetic
8
genetic improvement
8
gaps widening
8
agronomic factors
8
ageing effects
8

Similar Publications

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Osteomyelitis is commonly caused by pathogens like , but rare organisms such as , typically associated with superficial skin infections, can also be implicated. Recognizing these atypical pathogens presents diagnostic and therapeutic challenges, especially in the presence of orthopedic hardware. We conducted a literature review yielding 25 studies and encompassing 797 patient cases, which highlights the emerging role of species in osteomyelitis, particularly following trauma or surgical interventions.

View Article and Find Full Text PDF

Background: Femoral condyle insufficiency fractures following total knee arthroplasty (FCIF-TKA) are rare but significant complications. These fractures, characterized by atraumatic bone insufficiency near the femoral component, present unique challenges in postoperative care, often necessitating femoral component revision.

Methods: This study retrospectively reviewed 835 primary total knee arthroplasties performed by a single surgeon, identifying six cases of FCIF-TKA.

View Article and Find Full Text PDF

Neural Stem/Progenitor Cell Therapy in Patients and Animals with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-analysis.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients.

View Article and Find Full Text PDF

The incidence of melanoma has increased for decades, and while surgical treatment of early stage disease is often curative, metastatic disease continues to have significant morbidity and mortality and carries a high associated health burden and economic cost. An expanding number of dermatologists are playing a key role in coordinating the care of patients with advanced melanoma, including in the setting of multidisciplinary melanoma clinics, many of which are anchored in dermatology departments. Advances in the understanding of the genetic and immunoregulatory aspects of melanoma development and progression have yielded a wave of novel therapeutics that has made significant impact on the approach to patients with metastatic disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!