A review of the metabolism and pharmacokinetics of paroxetine in man.

Acta Psychiatr Scand Suppl

Beecham Pharmaceuticals Research Division, Medicinal Research Centre, Harlow, Essex, United Kingdom.

Published: December 1989

Paroxetine is well absorbed from the gastrointestinal tract, and appears to undergo first-pass metabolism which is partially saturable. Consistent with its lipophilic amine character, paroxetine is extensively distributed into tissues. Its plasma protein binding at therapeutically relevant concentrations is about 95%. Paroxetine is eliminated by metabolism involving oxidation, methylation, and conjugation. All of these factors lead to wide interindividual variation in the pharmacokinetics of paroxetine. Renal clearance of the compound is negligible. The major metabolites of paroxetine are conjugates which do not compromise its selectivity nor contribute to the clinical response. Ascending single-dose studies reveal that the pharmacokinetics of paroxetine are non-linear to a limited extent in most subjects and to a marked degree in only a few. Also, steady-state pharmacokinetic parameters are not predictable from single-dose data. In many subjects, daily administration of 20-50 mg of paroxetine leads to little or no disproportionality in plasma levels with dose, although in a few subjects this phenomenon is evident. Steady-state plasma concentrations are generally achieved within 7 to 14 days. The terminal half-life is about one day, although there is a wide intersubject variability (e.g. with 30 mg, a range of 7-65 hours was observed in a group of 28 healthy young subjects). In elderly subjects there is wide interindividual variation in steady-state pharmacokinetic parameters, with statistically significantly higher plasma concentrations and slower elimination than in younger subjects, although there is a large degree of overlap in the ranges of corresponding parameters. In severe renal impairment higher plasma levels of paroxetine are achieved than in healthy individuals after single dose. In moderate hepatic impairment the pharmacokinetics after single doses are similar to those of normal subjects. Paroxetine is not a general inducer or inhibitor of hepatic oxidation processes, and has little or no effect on the pharmacokinetics of other drugs examined. Its metabolism and pharmacokinetics are to some degree affected by the induction or inhibition of drug metabolizing enzyme(s). From a pharmacokinetic standpoint, drug interactions involving paroxetine are considered unlikely to be a frequent occurrence. Data available have failed to reveal any correlation between plasma concentrations of paroxetine and its clinical effects (either efficacy or adverse events).

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0447.1989.tb07176.xDOI Listing

Publication Analysis

Top Keywords

paroxetine
12
pharmacokinetics paroxetine
12
plasma concentrations
12
metabolism pharmacokinetics
8
wide interindividual
8
interindividual variation
8
steady-state pharmacokinetic
8
pharmacokinetic parameters
8
plasma levels
8
higher plasma
8

Similar Publications

Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants.

View Article and Find Full Text PDF

Background: In older people, medications with anticholinergic or sedative properties are associated with falls, frailty, and functional and cognitive impairment. These medications are often described as a subset of potentially inappropriate medications (PIMs). We examined the prevalence of anticholinergic or sedative medications to avoid in older people in France in 2023.

View Article and Find Full Text PDF

Piperazine-based P2X4 receptor antagonists.

Arch Pharm (Weinheim)

January 2025

European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.

The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.

View Article and Find Full Text PDF

Paroxetine promotes longevity via ser-7-dop-4-IIS axis in Caenorhabditis elegans.

Geroscience

December 2024

Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China.

Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the clinical treatment of depression. While several antidepressants show promise as geroprotectors, the role of paroxetine in aging remains unclear. In this study, we evaluated the lifespan extension effect of paroxetine in Caenorhabditis elegans (C.

View Article and Find Full Text PDF

Fibromyalgia (FM) is a common chronic pain with no established treatment. Acupuncture is an expected treatment for FM though a diagnosis of FM tends to be delayed, and the advantage is still unclear in early-phase intervention with acupuncture treatment for FM. A 51-year-old woman with panic disorder presented with a four-month history of whole-body pain and was diagnosed with FM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!