Bacteria have evolved cellular control mechanisms to ensure proper length specification for surface-bound polysaccharides. Members of the Polysaccharide Copolymerase (PCP) family are central to this process. PCP-1 family members are anchored to the inner membrane through two transmembrane helices and contain a large periplasm-exposed domain. PCPs are known to form homooligomers but their exact stoichiometry is controversial in view of conflicting structural and biochemical data. Several prior investigations addressing this question indicated a nonameric, hexameric, or tetrameric organization of several PCP-1 family members. In this work, we gathered additional evidence that E.coli WzzB and WzzE PCPs form octameric homo-oligomeric complexes. Detergent-solubilized PCPs were purified to homogeneity and subjected to blue native gel analysis, which indicated the presence of a predominant high-molecular product of over 500 kDa in mass. Molecular mass of WzzE and WzzB-detergent oligomers was estimated to be 550 kDA by size-exclusion coupled to multiangle laser light scattering (SEC-MALLS). Oligomeric organization of purified WzzB and WzzE was further investigated by negative stain electron microscopy and by X-ray crystallography, respectively. Analysis of EM-derived molecular envelope of WzzB indicated that the full-length protein is composed of eight protomers. Crystal structure of LDAO-solubilized WzzE was solved to 6 Å resolutions and revealed its octameric subunit stoichiometry. In summary, we identified a possible biological unit utilized for the glycan chain length determination by two PCP-1 family members. This provides an important step toward further unraveling of the mechanistic basis of chain length control of the O-antigen and the enterobacterial common antigen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282412 | PMC |
http://dx.doi.org/10.1002/pro.2586 | DOI Listing |
J Bacteriol
December 2020
Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, Australia.
The ability of bacteria to synthesise complex polysaccharide chains at a controlled number of repeating units has wide implications for a range of biological activities that include: symbiosis, biofilm formation and immune system avoidance. Complex polysaccharide chains such as the O antigen (Oag) component of lipopolysaccharide and the enterobacterial common antigen (ECA) are synthesised by the most common polysaccharide synthesis pathway used in bacteria, known as the Wzy-dependent pathway. The Oag and ECA are polymerized into chains via the inner membrane proteins WzyB and WzyE, respectively, while the respective co-polymerases WzzB and WzzE modulate the number of repeat units in the chains or "the modal length" of the polysaccharide via a hypothesised interaction.
View Article and Find Full Text PDFObjective: wzz is involved in the synthesis of O antigen and plays a role in virulence in many gram-negative bacteria. However, the function of wzzE in avian pathogenic Escherichia coli (APEC) is unclear. The aim of this study is to elucidate the role of wzzE in the synthesis of LPS and virulence.
View Article and Find Full Text PDFProtein Sci
January 2015
Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Bacteria have evolved cellular control mechanisms to ensure proper length specification for surface-bound polysaccharides. Members of the Polysaccharide Copolymerase (PCP) family are central to this process. PCP-1 family members are anchored to the inner membrane through two transmembrane helices and contain a large periplasm-exposed domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!