LIMK1 regulates human trophoblast invasion/differentiation and is down-regulated in preeclampsia.

Am J Pathol

Department of Pediatrics, University of California, San Francisco, San Francisco, California; Department of Biomedical Sciences, University of California, San Francisco, San Francisco, California; Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California. Electronic address:

Published: December 2014

Successful human pregnancy requires extensive invasion of maternal uterine tissues by the placenta. Invasive extravillous trophoblasts derived from cytotrophoblast progenitors remodel maternal arterioles to promote blood flow to the placenta. In the pregnancy complication preeclampsia, extravillous trophoblasts invasion and vessel remodeling are frequently impaired, likely contributing to fetal underperfusion and maternal hypertension. We recently demonstrated in mouse trophoblast stem cells that hypoxia-inducible factor-2 (HIF-2)-dependent Lim domain kinase 1 (LIMK1) expression regulates invasive trophoblast differentiation by modulating the trophoblast cytoskeleton. Interestingly, in humans, LIMK1 activity promotes tumor cell invasion by modulating actin and microtubule integrity, as well as by modulating matrix metalloprotease processing. Here, we tested whether HIF-2α and LIMK1 expression patterns suggested similar roles in the human placenta. We found that LIMK1 immunoreactivity mirrored HIF-2α in the human placenta in utero and that LIMK1 activity regulated human cytotrophoblast cytoskeletal integrity, matrix metallopeptidase-9 secretion, invasion, and differentiation in vitro. Importantly, we also found that LIMK1 levels are frequently diminished in the preeclampsia setting in vivo. Our results therefore validate the use of mouse trophoblast stem cells as a discovery platform for human placentation disorders and suggest that LIMK1 activity helps promote human placental development in utero.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258498PMC
http://dx.doi.org/10.1016/j.ajpath.2014.08.013DOI Listing

Publication Analysis

Top Keywords

limk1 activity
12
limk1
8
extravillous trophoblasts
8
mouse trophoblast
8
trophoblast stem
8
stem cells
8
limk1 expression
8
human placenta
8
human
7
trophoblast
5

Similar Publications

The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health.

View Article and Find Full Text PDF

Discovery of MDI-114215: A Potent and Selective LIMK Inhibitor To Treat Fragile X Syndrome.

J Med Chem

January 2025

Medicines Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.

LIMKs are serine/threonine and tyrosine kinases responsible for controlling cytoskeletal dynamics as key regulators of actin stability, ensuring synaptic health through normal synaptic bouton structure and function. However, LIMK1 overactivation results in abnormal dendritic synaptic development that characterizes the pathogenesis of Fragile X Syndrome (FXS). As a result, the development of LIMK inhibitors represents an emerging disease-modifying therapeutic approach for FXS.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology.

Methods: Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors.

View Article and Find Full Text PDF
Article Synopsis
  • Endothelial dysfunction in type 2 diabetes (T2D) may be caused by stiffening of cell structures, possibly linked to polymerization of filamentous actin (F-actin) and its regulation by the protein cofilin.
  • Oxidative stress in endothelial cells from T2D patients and diabetic mice leads to increased F-actin and cell stiffness, with reactive oxygen species promoting F-actin formation and inactivating cofilin.
  • Genetic silencing or inhibiting LIM kinase 1, which inactivates cofilin, can decrease F-actin levels and reduce cell stiffness, suggesting a novel mechanism for endothelial stiffening in T2D.
View Article and Find Full Text PDF

Bisphenol A disrupts the neuronal F-actin cytoskeleton by activating the RhoA/ROCK/LIMK pathway in Neuro-2a cells.

Toxicology

December 2024

Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Key Laboratory of Environment-related Diseases and TCM Prevention and Control in Universities of Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China. Electronic address:

Bisphenol A (BPA) is an environmental endocrine disruptor that is widely present in the environment and has been reported to affect neuronal cytoskeleton and neural function. However, the exact molecular mechanisms remain unclear. In the present study, the effects of BPA on cytoskeleton rearrangement were examined, and the associated signaling pathways, which were influenced by the RhoA/ROCK/LIMK pathway in Neuro-2a cells in vitro, were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!