AI Article Synopsis

Article Abstract

Background And Aims: The aim of this study is to investigate the expression pattern of histone deacetylase 9 in peripheral blood of patients with allergic asthma and its regulatory effect on the balance of Th17/Treg cells involved in the pathogenesis of asthma.

Methods: flap-Ub promoter-GFP-WRE vector was used to construct the Jurkat-HA-FOXP3 cell line. After histone deacetylase inhibitor-trichostatin A (TSA) treatment, FOXP3 and RORγt expression were detected by real-time-polymerase chain reaction (RT-PCR). BALB/c mice were randomly assigned to control group, TSA treatment and the asthma group. Serum Immunoglobulin E (IgE) was detected with enzyme-linked immunosorbent assay (ELISA), airway inflammation in lung tissue evaluated by haematoxylin/eosin staining, bronchoalveolar lavage fluid (BALF) cell number and differential counted, interleukin (IL)-17A and TGF-β concentrations in BALF measured with ELISA, and expression of RORγt and FOXP3 messenger RNA (mRNA)measured by RT-PCR. Forty-seven patients with asthma were recruited and assigned to intermittent, mild and moderate-severe group. GATA3, IL-4, histone deacetylases (HDAC) 9 mRNA expression level were measured by RT-PCR.

Results: After TSA treatment, FOXP3 mRNA level was upregulated, while RORγt mRNA level was downregulated. FOXP3 protein level was also upregulated by TSA. In vivo, TSA treatment can inhibit IL-17 but promote transforming growth factor-beta production in the BALF of asthma mice, and inhibited the expression of Th17 cells and RORγt mRNA in lung; also can promote Foxp3 mRNA expression. GATA3, IL-4 mRNA expression levels were upregulated in patients with asthma than the healthy control. HDAC9 mRNA expression level was associated with the severity of disease.

Conclusion: The histone deacetylase inhibitor TSA can regulate the balance of Th17/Treg in asthma by regulating the activity of histone deacetylase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/crj.12227DOI Listing

Publication Analysis

Top Keywords

histone deacetylase
20
tsa treatment
16
mrna expression
16
balance th17/treg
12
deacetylase inhibitor
8
allergic asthma
8
expression
8
treatment foxp3
8
patients asthma
8
gata3 il-4
8

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Introduction: The effects of remimazolam (Re) in combination with andrographolide (AP) on learning, memory, and motor abilities in rats following cardiopulmonary bypass (CPB) surgery were studied.

Methods: We hypothesized that the combination of Re and AP could improve postoperative cognitive dysfunction (POCD) in rats after CPB by modulating nervous system inflammation. Cognitive function was assessed using the Morris Water Maze test, and the concentrations of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

HDAC6 Facilitates PRV and VSV Infection by Inhibiting Type I Interferon Production.

Viruses

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

HDAC6 modulates viral infection through diverse mechanisms. Here, we investigated the role of HDAC6 in influencing viral infection in pig cells with the aim of exploiting the potential antiviral gene targets in pigs. Using gene knockout and overexpression strategies, we found that HDAC6 knockout greatly reduced PRV and VSV infectivity, whereas HDAC6 overexpression increased their infectivity in PK15 cells.

View Article and Find Full Text PDF

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

Sirtuins and Their Implications in the Physiopathology of Gestational Diabetes Mellitus.

Pharmaceuticals (Basel)

January 2025

Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland.

Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for the mother and her child. An effective therapeutic that can reduce the incidence of GDM and improve long-term outcomes is a major research priority and is very important for public health. Unfortunately, despite numerous studies, the molecular mechanisms underlying GDM are not fully defined and require further study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!