p63 inhibits extravillous trophoblast migration and maintains cells in a cytotrophoblast stem cell-like state.

Am J Pathol

Department of Pathology, University of California San Diego, La Jolla, California; Department of Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California. Electronic address:

Published: December 2014

Proper differentiation of placental epithelial cells, called trophoblast, is required for implantation. Early during placentation, trophoblast cell columns help anchor the developing embryo in the uterine wall. Although proximally continuous with villous cytotrophoblast (CTB) distally, these cells differentiate into invasive extravillous trophoblast. We previously reported that p63, a p53 family member, is highly expressed in proliferative villous CTB and required for induction of the trophoblast lineage in human pluripotent stem cells. We now further explore its function in human trophoblast by using both primary CTB from the early placenta and established trophoblast cell lines. We show that p63 is expressed in epidermal growth factor receptor-positive CTB and that its expression decreases with differentiation into HLA-G(+) extravillous trophoblast. In trophoblast cell lines, p63 is expressed in JEG3 cells but absent from HTR8 cells. Overexpression of p63 in both cell lines enhances cell proliferation and significantly reduces cell migration; conversely, down-regulation of p63 in JEG3 cells reduces cell proliferation and restores cell migration. Analysis of epithelial-to-mesenchymal transition, cell adhesion, and matrix degradation pathways shows that p63 blocks epithelial-to-mesenchymal transition, promotes a CTB-specific cell adhesion profile, and inhibits expression of matrix metalloproteinases. Taken together, these data show that p63 maintains the proliferative CTB state, at least partially through regulation of epithelial-to-mesenchymal transition, cell adhesion, and matrix degradation pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258507PMC
http://dx.doi.org/10.1016/j.ajpath.2014.08.006DOI Listing

Publication Analysis

Top Keywords

extravillous trophoblast
12
trophoblast cell
12
cell lines
12
epithelial-to-mesenchymal transition
12
cell adhesion
12
cell
11
trophoblast
9
p63
8
lines p63
8
p63 expressed
8

Similar Publications

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

The BMP Signaling Pathway: Bridging Maternal-Fetal Crosstalk in Early Pregnancy.

Reprod Sci

January 2025

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.

The maintenance of early pregnancy is a complex and distinctive process, primarily characterized by critical reproductive events such as embryo implantation, trophoblasts differentiation, decidualization, and extravillous trophoblasts (EVTs) invasion etc. However, dysregulation of these essential reproductive processes can result in various pregnancy complications, including recurrent miscarriage, preeclampsia, and fetal growth restriction etc. Notably, these complications exhibit an interconnected regulatory network that suggests shared underlying pathophysiological mechanisms.

View Article and Find Full Text PDF

Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.

View Article and Find Full Text PDF

Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.

View Article and Find Full Text PDF

Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!