AC conductivity parameters of graphene derived from THz etalon transmittance.

Nanoscale

Terahertz Sensors Laboratory, Departments of Physics and Electrical Engineering, Wright State University, Dayton, OH 45435, USA.

Published: November 2014

THz frequency-domain transmittance measurements were carried out on chemical-vapor-deposited (CVD) graphene films transferred to high-resistivity silicon substrates, and packaged as back-gated graphene field effect transistors (G-FETs). The graphene AC conductivity σ(ω), both real and imaginary parts, is determined between 0.2 and 1.2 THz from the transmittance using the transmission matrix method and curve-fitting techniques. Critical parameters such as the charge-impurity scattering width and chemical potential are calculated. It is found that not only the sheet charge density but also the scattering parameter can be modified by the back-gate voltage.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr03222eDOI Listing

Publication Analysis

Top Keywords

conductivity parameters
4
graphene
4
parameters graphene
4
graphene derived
4
derived thz
4
thz etalon
4
etalon transmittance
4
transmittance thz
4
thz frequency-domain
4
frequency-domain transmittance
4

Similar Publications

Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).

View Article and Find Full Text PDF

Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.

View Article and Find Full Text PDF

While bacille-calmette-guerin (BCG) vaccination is one of the recommended strategies for preventing tuberculosis (TB), its coverage is low in several countries, including Ethiopia. This study investigated the spatial co-distribution and drivers of TB prevalence and low BCG coverage in Ethiopia. This ecological study was conducted using data from a national TB prevalence survey and the Ethiopian demographic and health survey (EDHS) to map the spatial co-distribution of BCG vaccination coverage and TB prevalence.

View Article and Find Full Text PDF

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

The oil and gas industry faces two significant challenges, including rising global temperatures and depletion of reserves. Enhanced recovery techniques such as polymer flooding have positioned themselves as an alternative that attracts international attention thanks to increased recovery factors with low emissions. However, existing physical models need further refinement to improve predictive accuracy and prevent design failures in polymer flooding projects.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!