Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We studied the conditions under which calves can be primed for mucosal and serum antibody memory responses against bovine respiratory syncytial virus (BRSV), and the relationship between such responses and protection against the virus. Calves were primed via the respiratory tract with a low or high amount of live virus, with killed virus, or intramuscularly with live virus. Calves were challenged via the respiratory tract. Priming with live virus via the respiratory tract induced primary antibody responses in serum and on the mucosae, which were identical after the low and the high amount of virus. These responses were suppressed by maternal antibodies. Intramuscular priming of seronegative calves induced serum IgG1 and sometimes serum IgM and IgG2 responses, but no responses were detected on the mucosae. Sera of calves primed by the intramuscular or the respiratory route recognized the same viral proteins. No responses were observed after priming with killed virus, or after intramuscular priming of calves with maternal antibodies. After challenge, mucosal and serum antibody memory responses developed in calves that had been primed via the respiratory tract with live virus, whether they had maternal antibodies or not. One colostrum-fed calf showed a mucosal memory response, although serum responses were still suppressed by maternal antibodies. None of the calves thus primed shed virus after challenge. Intramuscular priming also primed for mucosal and serum memory responses after challenge, which however started perhaps slightly later and were not associated with protection against virus shedding. Priming with killed virus, or with live virus intramuscularly in the presence of maternal antibodies proved least effective in inducing memory and protection against virus shedding. Thus, protection against virus shedding was afforded by priming with live virus via the respiratory tract, both in calves with an without maternal antibodies. Protection was associated with a strong and rapid mucosal antibody memory response, but the reverse was not necessarily true. Protection against virus excretion had no relationship to titers of serum neutralizing or serum IgG1 or nasal IgA antibodies at the time of challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0165-2427(89)90057-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!