Winter jujube (Zizyphus jujuba Mill.) quality forecasting method utilising electronic nose (EN) and double-layered cascaded series stochastic resonance (DCSSR) was investigated. EN responses to jujubes stored at room temperature were continuously measured for 8 days. Jujubes' physical/chemical indexes, such as firmness, colour, total soluble solids (TSS), and ascorbic acid (AA), were synchronously examined. Examination results indicated that jujubes were getting ripe during storage. EN measurement data was processed by stochastic resonance (SR) and DCSSR. SR and DCSSR output signal-to-noise ratio (SNR) maximums (SNR-MAX) discriminated jujubes under different storage time successfully. Multiple variable regression (MVR) results between physical/chemical indexes and SR/DCSSR eigen values demonstrated that DCSSR eigen values were more suitable for jujube quality determination. Quality forecasting model was developed using non-linear fitting regression of DCSSR eigen values. Validating experiments demonstrated that forecasting accuracy of this model is 97.35%. This method also presented other advantages including fast response, non-destructive, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.08.009DOI Listing

Publication Analysis

Top Keywords

quality forecasting
12
eigen values
12
winter jujube
8
jujube zizyphus
8
zizyphus jujuba
8
jujuba mill
8
mill quality
8
forecasting method
8
electronic nose
8
stochastic resonance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!