The nitrate-nitrite-NO pathway to nitric oxide (NO) production is a symbiotic pathway in mammals that is dependent on nitrate reducing oral commensal bacteria. Studies suggest that by contributing NO to the mammalian host, the oral microbiome helps maintain cardiovascular health. To begin to understand how changes in oral microbiota affect physiological functions such as blood pressure, we have characterized the Wistar rat nitrate reducing oral microbiome. Using 16S rRNA gene sequencing and analysis we compare the native Wistar rat tongue microbiome to that of healthy humans and to that of rats with sodium nitrate and chlorhexidine mouthwash treatments. We demonstrate that the rat tongue microbiome is less diverse than the human tongue microbiome, but that the physiological activity is comparable, as sodium nitrate supplementation significantly lowered diastolic blood pressure in Wistar rats and also lowers blood pressure (diastolic and systolic) in humans. We also show for the first time that sodium nitrate supplementation alters the abundance of specific bacterial species on the tongue. Our results suggest that the changes in oral nitrate reducing bacteria may affect nitric oxide availability and physiological functions such as blood pressure. Understanding individual changes in human oral microbiome may offer novel dietary approaches to restore NO availability and blood pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!