The aim of this present study was to establish a new in vitro assay, double artificial membrane permeation assay (DAMPA), to evaluate the human intestinal permeability of drugs. A double artificial membrane with an intracellular compartment was constructed in side-by-side chambers by sandwiching a filter containing buffer solution with impregnated lipophilic filters with dodecane containing 2w/v% phosphatidylcholine. Permeation data of ionic compounds clearly indicated that not only the pH value of the apical solution but also that of the intracellular compartment affected the permeability across the double artificial membrane. DAMPA was performed with 20 compounds at physiological pH (apical; 6.5, intracellular and basal; 7.4). Paracellular and transcellular permeabilities of compounds in human epithelium were estimated based on the characteristics of the paracellular pathway using physicochemical properties of compounds with the Renkin function and the area factor i.e. the difference in the effective surface area between human epithelium and the double artificial membrane, respectively. The human intestinal permeability of each compound was predicted by the sum of estimated transcellular and paracellular permeabilities. Predicted human intestinal permeability was significantly correlated with the fraction of absorbed dose in humans, indicating that DAMPA has the potential to predict oral absorption of drugs in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2014.09.009 | DOI Listing |
ACS Nano
January 2025
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China.
Helical structures such as right-handed double helix for DNA and left-handed α-helix for proteins in biological systems are inherently chiral. Importantly, chirality at the nanoscopic level plays a vital role in their macroscopic chiral functionalities. In order to mimic the structures and functions of natural chiral nanoarchitectures, a variety of chiral nanostructures obtained from artificial helical polymers are prepared, which can be directly observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFChempluschem
January 2025
Dmitry Mendeleev University of Chemical Technology of Russia, EMCPS Department, Miusskaya sq.9, 125047, Moscow, RUSSIAN FEDERATION.
Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Pharmacy Department Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu Province, China.
Physical liver injury is an acute and potentially serious adverse event that may result in acute liver failure or even death. Diagnosis is often challenging. Minocycline, a semi-synthetic second-generation tetracycline, has high fat solubility and good tissue permeability.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.
View Article and Find Full Text PDFImaging Sci Dent
December 2024
Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Assiut University, Assiut, Egypt.
Purpose: This study was performed to introduce, evaluate, and compare various novel assessment protocols designed for straightforward, reliable, and reproducible measurement of alveolar bone levels. These protocols are intended for standardized periodontal assessment and follow-up, utilizing cone-beam computed tomography (CBCT) images and manipulation of Digital Imaging and Communications in Medicine (DICOM) viewer software.
Materials And Methods: Two experienced oral and maxillofacial radiologists developed 5 distinct radiographic measurement protocols.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!