Regulation of toxin gene expression in Clostridium perfringens.

Res Microbiol

Department of Bacteriology, Graduate School of Medical Science, University of Kanazawa, 13-1 Takara-Machi, Kanazawa, Ishikawa 920-8640, Japan.

Published: May 2015

The Gram-positive, anaerobic, spore-forming, rod-shaped Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tract of humans and animals. C. perfringens causes clostridial myonecrosis (or gas gangrene), enteritis and enterotoxemia in humans and livestock by producing numerous extracellular toxins and enzymes. The toxin gene expression is regulated by a two-component regulatory system and regulatory RNA VirR/VirS-VR-RNA cascade. The VirR/VirS system was originally found in a type A strain, but a recent report showed that it is also important for the toxin gene regulation in other types of strains. Two types of cell-cell signaling, i.e., agr-system and AI-2 signaling, are also important for the regulation of toxin genes. Several regulatory systems independent from the VirR/VirS system, including virX, the orphan histidine kinase ReeS and orphan response regulator RevR, are also involved in the regulation of toxin genes. In addition, the expression of toxin genes is upregulated after contact with Caco-2 cells. C. perfringens has a complex regulatory network for toxin gene expression and thus the coordination of toxin gene expression is important for the process of infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2014.09.010DOI Listing

Publication Analysis

Top Keywords

toxin gene
20
gene expression
16
regulation toxin
12
toxin genes
12
clostridium perfringens
8
virr/virs system
8
toxin
7
gene
5
expression
5
regulation
4

Similar Publications

Ruminococcus gnavus is a gut bacterium found in > 90% of healthy individuals, but its increased abundance is also associated with chronic inflammatory diseases, particularly Crohn's disease. Nevertheless, its global distribution and intraspecies genomic variation remain understudied. By surveying 12,791 gut metagenomes, we recapitulated known associations with metabolic diseases and inflammatory bowel disease.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a contagious foodborne pathogen that specifically colonizes the human large intestine, which is regulated by different environmental stimuli within the gut. Transcriptional regulation of EHEC virulence and infection has been extensively studied, while the posttranscriptional regulation of these processes by small RNAs (sRNAs) remains not fully understood. Here we present a virulence-regulating pathway in EHEC O157:H7, in which the sRNA EvrS binds to and destabilizes the mRNA of Z2269, a novel transcriptional regulator.

View Article and Find Full Text PDF

Background: is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of , focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA.

Methods: A total of 19,711 genomes were retrieved from GenBank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!