To fully understand the fundamental properties of light-energy-converting materials, it is important to determine the local atomic configuration of photofunctional centers. In this study, direct imaging of one- and two-Tb-atom emission centers in a two-dimensional Tb-doped Ca2Ta3O10 nanocrystal was carried. The emission centers were located at the Ca sites in the perovskite structure, and no concentration-based quenching was observed even when the emission centers were in close proximity to each other. The relative photoluminescence efficiency for green emission of the nanosheet suspension was 38.1%. Furthermore, the Tb-doped Ca2Ta3O10 nanocrystal deposited co-catalyst showed high photocatalytic activity for hydrogen production from water (quantum efficiency: 71% at 270 nm). Tb(3+) dopants in the two-dimensional crystal might have the potential to stabilize the charge separation state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201406638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!