Uracil DNA glycosylase plays a key role in DNA maintenance via base excision repair. Its role is to bind to DNA, locate unwanted uracil, and remove it using a base flipping mechanism. To date, kinetic analysis of this complex process has been achieved using stopped-flow analysis but, due to limitations in instrumental dead-times, discrimination of the "binding" and "base flipping" steps is compromised. Herein we present a novel approach for analyzing base flipping using a microfluidic mixer and two-color two-photon (2c2p) fluorescence lifetime imaging microscopy (FLIM). We demonstrate that 2c2p FLIM can simultaneously monitor binding and base flipping kinetics within the continuous flow microfluidic mixer, with results showing good agreement with computational fluid dynamics simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac502732sDOI Listing

Publication Analysis

Top Keywords

base flipping
12
flipping kinetics
8
two-color two-photon
8
fluorescence lifetime
8
lifetime imaging
8
imaging microscopy
8
microfluidic mixer
8
analysis dna
4
dna binding
4
binding nucleotide
4

Similar Publications

Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates.

Nat Commun

January 2025

Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.

Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.

View Article and Find Full Text PDF

Efficient High-Throughput DNA Breathing Features Generation Using Jax-EPBD.

bioRxiv

December 2024

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM.

DNA breathing dynamics-transient base-pair opening and closing due to thermal fluctuations-are vital for processes like transcription, replication, and repair. Traditional models, such as the Extended Peyrard-Bishop-Dauxois (EPBD), provide insights into these dynamics but are computationally limited for long sequences. We present , a high-throughput Langevin molecular dynamics framework leveraging JAX for GPU-accelerated simulations, achieving up to 30x speedup and superior scalability compared to the original C-based EPBD implementation.

View Article and Find Full Text PDF

RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.

View Article and Find Full Text PDF
Article Synopsis
  • KEOPS is a crucial enzyme complex that modifies tRNAs, specifically adding a N-threonylcarbamoyl adenosine (tA) modification essential for protein synthesis in eukaryotes and archaea.
  • Mutations in any of the KEOPS subunits can cause Galloway Mowat Syndrome (GAMOS) in humans, highlighting the complex's significance in cellular function.
  • Recent cryogenic electron microscopy studies revealed how KEOPS interacts with tRNA, showing that its structure changes during modification and emphasizing the roles of all subunits, especially Bud32, in regulating tRNA modification.
View Article and Find Full Text PDF

Impact of a 2-week flipped classroom virtual neurology clerkship versus a traditional 4-week rotation on NBME shelf exam scores.

BMC Med Educ

November 2024

Division of Stroke and Neurocritical Care, Department of Neurology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA.

Objective: There is conflicting evidence whether decreased clerkship duration is associated with reduced NBME shelf examination performance. We hypothesized that scores would remain stable for students in a shortened 2-week flipped classroom-based virtual rotation as compared to the traditional 4-week Neurology clerkship.

Background: There is conflicting evidence whether decreased clerkship duration is associated with reduced NBME shelf examination performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!