A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced detection of the algal toxin PbTx-2 in marine waters by atmospheric pressure chemical ionization mass spectrometry. | LitMetric

Enhanced detection of the algal toxin PbTx-2 in marine waters by atmospheric pressure chemical ionization mass spectrometry.

Rapid Commun Mass Spectrom

Marine and Atmospheric Chemistry Research Laboratory, Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, 28403, USA.

Published: November 2014

Rationale: Karenia brevis, a marine dinoflagellate, biosynthesizes a unique class of polyether toxins called brevetoxins that produce significant health, environmental and economic impacts in and along coastal waters. Previous application of liquid chromatography/mass spectrometry for detection of the most common brevetoxin, PbTx-2, has relied almost exclusively upon electrospray ionization (ESI). A different ionization source is proposed in this study with improved sensitivity ultimately leading to lower limit of detection compared to (+) ESI.

Methods: Brevetoxin standards and samples (PbTx-2) were analyzed by liquid chromatography/mass spectrometry using both (+) atmospheric pressure chemical ionization and (+) electrospray ionization sources.

Results: LC/MS with (+) APCI exhibited an order of magnitude improvement in the limit of detection (7.7 × 10(-4) pg mass on-column) compared to the same method using (+) ESI (7.5 × 10(-3) pg mass on-column). The calibration sensitivity of (+) APCI (1.3 × 10(3)) was also five times higher than positive mode (+) ESI (0.26 × 10(3)).

Conclusions: Positive mode APCI represents a significant improvement in detection and quantification of PbTx-2 by LC/MS allowing for smaller sample sizes compared to previous studies using (+) ESI. This in turn leads to higher throughput of samples during and after bloom events giving stakeholders detailed information on the fate of this potent marine toxin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7032DOI Listing

Publication Analysis

Top Keywords

atmospheric pressure
8
pressure chemical
8
chemical ionization
8
liquid chromatography/mass
8
chromatography/mass spectrometry
8
electrospray ionization
8
limit detection
8
mass on-column
8
positive mode
8
ionization
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!