In Parkinson's disease (PD), neuronal cells undergo mitotic catastrophe and endoreduplication prior to cell death; however, the regulatory mechanisms remain to be defined. In this study, we investigated cell cycle regulation of DNA polymerase β (poly β) in rotenone-based dopaminergic cellular and animal models. Incubation with a low concentration (0.25 µM) of rotenone for 1.5 to 7 days resulted in a flattened cell body and decreased DNA replication during S phase, whereas a high concentration (2 µM) of rotenone exposure resulted in enlarged, multi-nucleated cells and converted the mitotic cycle into endoreduplication. Consistently, DNA poly β, which is mainly involved in DNA repair synthesis, was upregulated to a high level following exposure to 2 µM rotenone. The abrogation of DNA poly β by siRNA transfection or dideoxycytidine (DDC) treatment attenuated the rotenone-induced endoreduplication. The cell cycle was reactivated in cyclin D-expressing dopaminergic neurons from the substantia nigra (SN) of rats following stereotactic (ST) infusion of rotenone. Increased DNA poly β expression was observed in the substantia nigra pars compacta (SNc) and the substantia nigra pars reticulate (SNr) of rotenone-treated rats. Collectively, in the in vitro model of rotenone-induced mitotic catastrophe, the overexpression of DNA poly β promotes endoreduplication; in the in vivo model, the upregulation of DNA poly β and cell cycle reentry were also observed in the adult rat substantia nigra. Therefore, the cell cycle regulation of DNA poly β may be involved in the pathological processes of PD, which results in the induction of endoreduplication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193828 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109697 | PLOS |
Curr Cancer Drug Targets
January 2025
Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
Among the Poly(ADP-ribose) Polymerase (PARP) family in mammals, PARP1 is the first identified and well-studied member that plays a critical role in DNA damage repair and has been proven to be an effective target for cancer therapy. Here, we have reviewed not only the role of PARP1 in different DNA damage repair pathways, but also the working mechanisms of several PARP inhibitors (PARPi), inhibiting Poly-ADP-ribosylation (PARylation) processing and PAR chains production to trap PARP1 on impaired DNA and inducing Transcription- replication Conflicts (TRCs) by inhibiting the PARP1 activity. This review has systematically summarized the latest clinical application of six authorized PARPi, including olaparib, rucaparib, niraparib, talazoparib, fuzuloparib and pamiparib, in monotherapy and combination therapies with chemotherapy, radiotherapy, and immunotherapy, in different kinds of cancer.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.
View Article and Find Full Text PDFCancer Rep (Hoboken)
January 2025
Département de Biologie, Faculté des Sciences, Université Chouaïb Doukkali, El Jadida, Morocco.
Background: The Ets-1 transcription factor plays a primordial role in regulating the expression of numerous genes implicated in cancer progression. In a previous study, we revealed that poly(ADP-ribose) polymerase-1 (PARP-1) inhibition by PJ-34 results in Ets-1 level increase in cells, which is related with cell death of Ets-1-expressing cancer cells.
Aims: The mechanism of the antitumor effect of PARP-1 inhibition was investigated in the Ets-1-expressing MDA-MB-231 breast cancer cells.
Mol Biol Rep
January 2025
Department of Clinical Pathology, San Giovanni Addolorata Hospital, Rome, Italy.
Background: Ovarian Cancer is one of the leading causes of cancer death among women worldwide and the therapeutic landscape to treat it is constantly evolving. One of the major points of decision for the treatment choice is the presence of some genomic alterations that could confer sensitivity to the new available therapies including inhibitors of poly (ADP-ribose) polymerase (PARPi) with BRCA1 and 2 genes playing the most important role.
Methods And Results: We performed the search for any somatic and/or germline alteration in patient's samples by next generation sequencing (NGS).
Mikrochim Acta
January 2025
College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, P.R. China.
Cytosine-rich and poly(adenine)-tailed tetrahedral DNA framework (TDF) is designed as template (A-TDF) for anchoring silver nanoclusters (AgNCs) and igniting the dual-color fluorescence of AgNCs. The resultant DNA-AgNCs simultaneously emits red and green fluorescence, and the quantum yield of red fluorescence is as high as 44.8%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!