As the number of total joint arthroplasty and internal fixation procedures continues to rise, the threat of infection following surgery has significant clinical implications. These infections may have highly morbid consequences to patients, who often endure additional surgeries and lengthy exposures to systemic antibiotics, neither of which are guaranteed to resolve the infection. Of particular concern is the threat of bacterial biofilm development, since biofilm-mediated infections are difficult to diagnose and effective treatments are lacking. Developing therapeutic strategies have targeted mechanisms of biofilm formation and the means by which these bacteria communicate with each other to take on specialized roles such as persister cells within the biofilm. In addition, prevention of infection through novel coatings for prostheses and the local delivery of high concentrations of antibiotics by absorbable carriers has shown promise in laboratory and animal studies. Biofilm development, especially in an arthoplasty environment, and future diagnostic and treatment options are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407677 | PMC |
http://dx.doi.org/10.2217/fmb.14.64 | DOI Listing |
Environ Microbiome
January 2025
Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.
View Article and Find Full Text PDFInt J Pharm
January 2025
CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.
Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China. Electronic address:
We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.
View Article and Find Full Text PDFPlants (Basel)
January 2025
The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!