Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics.

Nano Lett

State Key Laboratory of Mechanics and Control of Mechanical Structures and College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

Published: November 2014

Low cost and high conductivity make copper (Cu) nanowire (NW) electrodes an attractive material to construct flexible and stretchable electronic skins, displays, organic light-emitting diodes (OLEDs), solar cells, and electrochromic windows. However, the vulnerabilities that Cu NW electrodes have to oxidation, bending, and stretching still present great challenges. This work demonstrates a new Cu@Cu4Ni NW conductive elastomer composite with ultrahigh stability for the first time. Cu@Cu4Ni NWs, facilely synthesized through a one-pot method, have highly crystalline alloyed shells, clear and abrupt interfaces, lengths more than 50 μm, and smooth surfaces. These virtues provide the NW-elastomer composites with a low resistance of 62.4 ohm/sq at 80% transparency, which is even better than the commercial ITO/PET flexible electrodes. In addition, the fluctuation amplitude of resistance is within 2 ohm/sq within 30 days, meaning that at ΔR/R0 = 1, the actual lifetime is estimated to be more than 1200 days. Neither the conductivity nor the performances of OLED with elastomers as conductive circuits show evident degradation during 600 cycles of bending, stretching, and twisting tests. These high-performance and extremely stable NW elastomeric electrodes could endow great chances for transparent, flexible, stretchable, and wearable electronic and optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl502647kDOI Listing

Publication Analysis

Top Keywords

bending stretching
12
flexible stretchable
12
oxidation bending
8
stretching twisting
8
superstable transparent
4
transparent conductive
4
conductive cu@cu4ni
4
cu@cu4ni nanowire
4
nanowire elastomer
4
elastomer composites
4

Similar Publications

Differentiation of glioblastoma G4 and two types of meningiomas using FTIR spectra and machine learning.

Anal Biochem

December 2024

Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland. Electronic address:

Brain tumors are among the most dangerous, due to their location in the organ that governs all life processes. Moreover, the high differentiation of these poses a challenge in diagnostics. Therefore, this study focused on the chemical differentiation of glioblastoma G4 (GBM) and two types of meningiomas (atypical - MAtyp and angiomatous - MAng) were done using Fourier Transform InfraRed (FTIR) spectroscopy, combined with statistical, multivariate, machine learning and rate of spectrum changes methods.

View Article and Find Full Text PDF

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Real-time monitoring of reactive oxygen and nitrogen species (RONS) in skeletal muscle provides crucial insights into the cause-and-effect relationships between physical activity and health benefits. However, the dynamic production of exercise-induced RONS remains poorly explored, due to the lack of sensing tools that can conform to soft skeletal muscle while monitor RONS release during exercise. Here we introduce dual flexible sensors via twisting carbon nanotubes into helical bundles of fibers and subsequent assembling electrochemical sensing components.

View Article and Find Full Text PDF

Low-Frequency Phonon Dispersion Relation Enabling Stable Cathode from Spent Lithium-Ion Batteries.

Adv Mater

December 2024

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.

Direct recycling technology can effectively solve the environmental pollution and resource waste problems caused by spent lithium-ion batteries. However, the repaired LiNiCoMnO (NCM) black mass by direct recycling technology shows an unsatisfactory cycle life, which is attributed to the formation of spinel/rock salt phases and rotational stacking faults caused by the in-plane and out-of-plane migration of transition metal (TM) atoms during charge/discharge. Herein, local lattice stress is introduced into the regenerated cathode during repair.

View Article and Find Full Text PDF

Impact of Sensitizer Yb on Structural and Optical Properties of AESiO (AE = Ba, Ca, Sr) Orthosilicates.

J Fluoresc

December 2024

Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, 495009, Chhattisgarh, India.

In the present work, BaSrSiO: Yb and CaSrSiO: Yb (Yb = 0 mol %, 1 mol %, 2 mol % and 3 mol %) nanophosphors were synthesized using the co-precipitation method, and their comparative structural and optical properties were studied to demonstrate the effect of Yb ion on the characteristic properties of the prepared nanophosphors. The powder X-ray diffraction (PXRD) patterns of BaSrSiO:Yb and CaSrSiO:Yb suggest the formation of a single-phase orthorhombic structure with space groups Pbnm and Pna21, respectively. The Raman shifts in BaSrSiO (BSS) and CaSrSiO (CSS) indicate out-of-phase bending of Sr-O and symmetric stretching of Si-O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!