Carbon budgets in mangrove forests are uncertain mainly due to the lack of data concerning carbon export in dissolved and gaseous forms. Temporal variability of in situ CO2 fluxes was investigated at the sediment-air interface in different seasons in different mangrove stands in a semi-arid climate. Fluxes were measured using dynamic closed incubation chambers (transparent and opaque) connected to an infra-red gas analyzer. Microclimatic conditions and chl-a contents of surface sediments were determined. Over all mangrove stands, CO2 fluxes on intact sediments were relatively low, ranging from -3.93 to 8.85 mmolCO₂·m(-2)·h(-1) in the light and in the dark, respectively. Changes in the fluxes over time appeared to depend to a great extent on the development of the biofilm at the sediment surface. We suggest that in intact sediments and in the dark, CO2 fluxes measured at the sediment-air interface rather reflect the metabolism of benthic organisms than sediment respiration (heterotrophic and autotrophic). However, without the biofilm, sediment water content and air temperature were main drivers of seasonal differences in CO2 fluxes, and their influence differed depending on the intertidal location of the stand. After removal of the biofilm, Q10 values in the Avicennia and the Rhizophora stands were 1.84 and 2.1, respectively, revealing the sensitivity of mangrove sediments to an increase in temperature. This study provides evidence that, if the influence of the biofilm is not taken into account, the in situ CO2 emission data currently used to calculate the budget will lead to underestimation of CO2 production linked to heterotrophic respiration fueled by organic matter detritus from the mangrove.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2014.09.066DOI Listing

Publication Analysis

Top Keywords

co2 fluxes
16
sediment-air interface
12
temporal variability
8
situ co2
8
mangrove stands
8
fluxes measured
8
intact sediments
8
biofilm sediment
8
fluxes
7
co2
6

Similar Publications

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Heat and drought events are increasing in frequency and intensity, posing significant risks to natural and agricultural ecosystems with uncertain effects on the net ecosystem CO exchange (NEE). The current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture impacts on the gross ecosystem exchange (GEE) and respiration ( ) fluxes to assess the temporal variability of NEE over south-western Europe for 2001-2022. Warming temperatures lengthen growing seasons, causing an increase in GEE, which is mostly compensated by a similar increment in .

View Article and Find Full Text PDF

Ocean acidification and global warming may favor blue carbon service in a Cymodocea nodosa community by modifying carbon metabolism and dissolved organic carbon fluxes.

Mar Pollut Bull

January 2025

Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.

Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.

View Article and Find Full Text PDF

Large emissions of CO and CH due to active-layer warming in Arctic tundra.

Nat Commun

January 2025

Climate and Ecosystem Sciences Division, Berkeley Lab, Berkeley, CA, USA.

Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.

View Article and Find Full Text PDF

Elevated CO and goethite inhibited anaerobic oxidation of methane in paddy soils.

J Environ Manage

December 2024

College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.

Microbially mediated anaerobic oxidation of methane (AOM) regulates methane (CH) fluxes. Increases in the global atmospheric carbon dioxide (CO) concentration and iron oxide rich in paddy soils influence AOM. However, the response and mechanisms between these two processes and AOM remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!