Symmetry-resolved surface-derived electronic structure of MoS2(0 0 0 1).

J Phys Condens Matter

Department of Physics and Astronomy, Theodore Jorgensen Hall, 855 N 16th, University of Nebraska, Lincoln, NE 68588-0299, USA.

Published: November 2014

We find a wave vector dependence of the band symmetries for MoS(2)(0 0 0 1) in angle-resolved photoemission. The band structures are found to be significantly different for states of even and odd reflection parities, despite the absence of true mirror plane symmetry away from Γ, the Brillouin zone center, along the line to the K point, at the Brillouin zone edge. Our measurements agree with density functional theory (DFT) calculations for each band symmetry, with the notable exception of the Mo 4d(x(2)-y(2)) contributions to the valence band structure of MoS(2)(0 0 0 1). The band structure is indicative of strong S 3p and Mo 4d hybridization. In particular, the top of the valence band is predominantly composed of Mo 4d(3z(2)-r(2)) derived states near Γ, whereas near K Mo 4d(x(2)-y(2)) as well as Mo 4d(xy) dominate. In contrast, the bottom of the valence band is dominated by Mo 5s and S 3p(z) contributions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/26/45/455501DOI Listing

Publication Analysis

Top Keywords

valence band
12
structure mos20
8
brillouin zone
8
band structure
8
band
7
symmetry-resolved surface-derived
4
surface-derived electronic
4
electronic structure
4
mos20 find
4
find wave
4

Similar Publications

We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for  = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for  = 18-40%.

View Article and Find Full Text PDF

Enhanced catalytic transfer hydrogenation of p-nitrophenol using formaldehyde: MnO-supported Ag nanohybrids with tuned d-band structure.

J Colloid Interface Sci

January 2025

Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:

Article Synopsis
  • The catalytic reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) is essential in the pharmaceutical and agrochemical sectors, with sustainable methods being a priority.
  • Using manganese dioxide (MnO) supported silver (Ag) nanoparticles (NPs) as a catalyst for the catalytic transfer hydrogenation (CTH) of 4-NP with formaldehyde (HCHO) provides a safer and more efficient alternative due to lower toxicity and easy handling.
  • The study shows that electron transfer from Ag to MnO enhances HCHO activation, resulting in a more effective CTH process, with the optimized 15% Ag/MnO catalyst achieving a significant turnover frequency of 3.83
View Article and Find Full Text PDF

A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.

View Article and Find Full Text PDF

Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting.

Mater Horiz

January 2025

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.

Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.

View Article and Find Full Text PDF

Structure of the Se Isomers─An Ab Initio Study.

J Phys Chem A

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.

This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!