Signaling in chemotactic amoebae remains spatially confined to stimulated membrane regions.

J Cell Sci

Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany

Published: December 2014

Recent work has demonstrated that the receptor-mediated signaling system in chemotactic amoeboid cells shows typical properties of an excitable system. Here, we delivered spatially confined stimuli of the chemoattractant cAMP to the membrane of differentiated Dictyostelium discoideum cells to investigate whether localized receptor stimuli can induce the spreading of excitable waves in the G-protein-dependent signal transduction system. By imaging the spatiotemporal dynamics of fluorescent markers for phosphatidylinositol (3,4,5)-trisphosphate (PIP₃), PTEN and filamentous actin, we observed that the activity of the signaling pathway remained spatially confined to the stimulated membrane region. Neighboring parts of the membrane were not excited and no receptor-initiated spatial spreading of excitation waves was observed. To generate localized cAMP stimuli, either particles that carried covalently bound cAMP molecules on their surface were brought into contact with the cell or a patch of the cell membrane was aspirated into a glass micropipette to shield this patch against freely diffusing cAMP molecules in the surrounding medium. Additionally, the binding site of the cAMP receptor was probed with different surface-immobilized cAMP molecules, confirming results from earlier ligand-binding studies.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.161133DOI Listing

Publication Analysis

Top Keywords

spatially confined
12
camp molecules
12
confined stimulated
8
stimulated membrane
8
camp
6
membrane
5
signaling chemotactic
4
chemotactic amoebae
4
amoebae remains
4
remains spatially
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!