It has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal-epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes. These skin substitutes were transplanted onto full-thickness skin wounds of immunoincompetent rats. Four weeks after transplantation the development of skin color was measured and grafts were excised and analyzed with regard to epidermal characteristics, in particular melanocyte number and function. Skin substitutes containing palmar-derived fibroblasts in comparison to nonpalmoplantar-derived fibroblasts showed (a) a significantly lighter pigmentation; (b) a reduced amount of epidermal melanin granules; and (c) a distinct melanosome expression. However, the number of melanocytes in the basal layer remained similar in both transplantation groups. These findings demonstrate that human palmar fibroblasts regulate the function of melanocytes in human pigmented dermo-epidermal skin substitutes after transplantation, whereas the number of melanocytes remains constant. This underscores the influence of site-specific stromal cells and their importance when constructing skin substitutes for clinical application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356440 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2014.0327 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFOrbit
January 2025
Department of Oculoplastic, Orbital and Lacrimal Surgery, Aichi Medical University Hospital, Nagakute, Japan.
Purpose: To describe a technique using retroauricular scalp graft for eyebrow reconstruction, along with problems encountered and countermeasures in treatment.
Methods: We present a patient with eyebrow loss following resection of a malignant schwannoma. We initially covered the defect from the upper eyelid to the eyebrow area with artificial dermis for hemostasis and to increase the granulation of the graft bed.
Adv Skin Wound Care
January 2025
At the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States, Adrian Chen, BS, Aleksandra Qilleri, BS, and Timothy Foster, BS, are Medical Students. Amit S. Rao, MD, is Project Manager, Department of Surgery, Wound Care Division, Northwell Wound Healing Center and Hyperbarics, Northwell Health, Hempstead. Sandeep Gopalakrishnan, PhD, MAPWCA, is Associate Professor and Director, Wound Healing and Tissue Repair Analytics Laboratory, School of Nursing, College of Health Professions, University of Wisconsin-Milwaukee. Jeffrey Niezgoda, MD, MAPWCA, is Founder and President Emeritus, AZH Wound Care and Hyperbaric Oxygen Therapy Center, Milwaukee, and President and Chief Medical Officer, WebCME, Greendale, Wisconsin. Alisha Oropallo, MD, is Professor of Surgery, Donald and Barbara Zucker School of Medicine and The Feinstein Institutes for Medical Research, Manhasset New York; Director, Comprehensive Wound Healing Center, Northwell Health; and Program Director, Wound and Burn Fellowship program, Northwell Health.
Generative artificial intelligence (AI) models are a new technological development with vast research use cases among medical subspecialties. These powerful large language models offer a wide range of possibilities in wound care, from personalized patient support to optimized treatment plans and improved scientific writing. They can also assist in efficiently navigating the literature and selecting and summarizing articles, enabling researchers to focus on impactful studies relevant to wound care management and enhancing response quality through prompt-learning iterations.
View Article and Find Full Text PDFGeneral Purpose: To provide a summary of six articles published in 2023 that provide important new data or insights about pressure injuries (PIs).
Target Audience: This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and registered nurses with an interest in skin and wound care.
Learning Objectives/outcomes: After participating in this educational activity, the participant will:1.
JMIR Dermatol
January 2025
Skin Refinery PLLC, Spokane, WA, United States.
Our team explored the utility of unpaid versions of 3 artificial intelligence chatbots in offering patient-facing responses to questions about 5 common dermatological diagnoses, and highlighted the strengths and limitations of different artificial intelligence chatbots, while demonstrating how chatbots presented the most potential in tandem with dermatologists' diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!