The purpose of the study was to determine multi-vitamin deficiency effects on the inducibility of main isoforms of cytochrome P450 in the rat liver. The study was carried out on 4 groups of Wistar rats. Rats of the 1st and 3rd group received semi-synthetic diets containing adequate (100% of recommended vitamin level) level of vitamins, the 2nd and 4th--the semi-synthetic diet containing vitamins in the amount of 20% from adequate level. The duration of the experiment was 4 weeks. During the last week indole-3-carbinol (I-3-C) in dose of 20 mg/kg body weight was added to the diet of the 3rd and 4th group of rats. Vitamin E content in liver and blood serum declined by 59 and 34%, respectively in rats which were fed vitamin-deficient diet (2nd group); vitamin A level decreased by 5 times in the liver, but was not changed in blood serum. Multi-vitamin deficiency in the diet led to the increase in the liver ethoxyresorufin O-dealkylase (EROD) activity of CYP1A1, methoxyresorufin O-dealkylase (MROD) activity of CYP1A2 and testosteron 6beta-hydroxylase (6beta-TG) activity of CYP3A by 11, 80 and 53%, respectively, and gene expression of CYP1A1, CYP1A2, CYP3A and AhR by 8,5; 1,6; 2,4 and 3,6 fold. In rats fed diet with adequate levels of vitamins (3rd group) I-3-C increased activity of EROD and MROD by 4,4 and 5,5 fold, and the expression of CYP1A1, CYP1A2 and AhR genes by 148; 3 and 3,5 fold compared to the parameters of the 1st group (without I-3-C). Multi-vitamin deficiency increased I-3-C-related induction of EROD activity and expression of CYP1A1 and CYP1A2 genes, but decreased I-3-C-related induction of the MROD activity. Thus, 5-fold reducing of vitamin content in rat diet lead to significant changes in activity and inducibility of cytochrome P450 of CYP1A and 3A family, which play a key role in the detoxification and metabolism of drugs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cytochrome p450
12
multi-vitamin deficiency
12
expression cyp1a1
12
cyp1a1 cyp1a2
12
3rd group
8
vitamin level
8
vitamin content
8
blood serum
8
rats fed
8
erod activity
8

Similar Publications

Molecular mechanisms of libido influencing semen quality in geese through the hypothalamic-pituitary-testicular-external genitalia axis.

Poult Sci

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China. Electronic address:

Libido plays a crucial role in influencing semen quality, yet the underlying regulatory mechanisms remain unclear. As a central axis in male goose reproduction, the hypothalamic-pituitary-testicular-external genitalia (HPTE) axis may contribute to the regulation of this process. In this study, we established a rating scale for goose libido based on average number of massages to erection (ANM) and the erection type, and evaluated semen quality across the entire flock.

View Article and Find Full Text PDF

The phase estimation algorithm is crucial for computing the ground-state energy of a molecular electronic Hamiltonian on a quantum computer. Its efficiency depends on the overlap between the Hamiltonian's ground state and an initial state, which tends to decay exponentially with system size. We showcase a practical orbital optimization scheme to alleviate this issue.

View Article and Find Full Text PDF

Oxylipin Profiling of Airway Structural Cells Is Unique and Modified by Relevant Stimuli.

J Proteome Res

January 2025

Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.

Oxylipins, diverse lipid mediators derived from fatty acids, play key roles in respiratory physiology, but the contribution of lung structural cells to this diverse profile is not well understood. This study aimed to characterize the oxylipin profiles of airway smooth muscle (ASM), lung fibroblasts (HLF), and epithelial (HBE) cells and define how they shift when they are exposed to stimuli related to contractility, fibrosis, and inflammation. Using HPLC-MS/MS, 162 oxylipins were measured in baseline media from cultured human ASM, HLF, and HBE cells as well as after stimulation with modulators of contractility and central regulators of fibrosis/inflammation.

View Article and Find Full Text PDF

Bone Disease Associated with Inactivating Aromatase Mutations and its Management.

Calcif Tissue Int

January 2025

Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria Alle Scotte, Siena, Italy.

Aromatase deficiency (ORPHA:91; OMIM: 613,546) is a rare, autosomal recessive disorder due to loss of function mutations in the CYP19A1 gene, described in both genders with an estimated incidence below 1/1000000. While in female the clinical manifestations generally occur at birth or in early infancy, and mainly involve sexual characteristics, in men clinical signs of aromatase deficiency mostly occur in puberty and especially in late puberty, so that diagnosis is generally established after the second decade due to tall stature, unfused epiphyses and reduced bone mass. Here we review the available information concerning the skeletal and extraskeletal phenotype and the clinical management of bone health in patients with aromatase CYP19A1 gene mutations.

View Article and Find Full Text PDF

Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!