A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long term effects of prenatal and postnatal airborne PAH exposures on ventilatory lung function of non-asthmatic preadolescent children. Prospective birth cohort study in Krakow. | LitMetric

The main goal of the study was to test the hypothesis that prenatal and postnatal exposures to polycyclic aromatic hydrocarbons (PAH) are associated with depressed lung function in non-asthmatic children. The study sample comprises 195 non-asthmatic children of non-smoking mothers, among whom the prenatal PAH exposure was assessed by personal air monitoring in pregnancy. At the age of 3, residential air monitoring was carried out to evaluate the residential PAH exposure indoors and outdoors. At the age of 5 to 8, children were given allergic skin tests for indoor allergens; and between 5 and 9 years lung function testing (FVC, FEV05, FEV1 and FEF25-75) was performed. The effects of prenatal PAH exposure on lung function tests repeated over the follow-up were adjusted in the General Estimated Equation (GEE) model for the relevant covariates. No association between FVC with prenatal PAH exposure was found; however for the FEV1 deficit associated with higher prenatal PAH exposure (above 37 ng/m(3)) amounted to 53 mL (p=0.050) and the deficit of FEF25-75 reached 164 mL (p=0.013). The corresponding deficits related to postnatal residential indoor PAH level (above 42 ng/m(3)) were 59 mL of FEV1 (p=0.028) and 140 mL of FEF25-75 (p=0.031). At the higher residential outdoor PAH level (above 90 ng/m(3)) slightly greater deficit of FEV1 (71 mL, p=0.009) was observed. The results of the study suggest that transplacental exposure to PAH compromises the normal developmental process of respiratory airways and that this effect is compounded by postnatal PAH exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254060PMC
http://dx.doi.org/10.1016/j.scitotenv.2014.09.051DOI Listing

Publication Analysis

Top Keywords

pah exposure
24
lung function
16
prenatal pah
16
pah
11
effects prenatal
8
prenatal postnatal
8
function non-asthmatic
8
non-asthmatic children
8
air monitoring
8
pah level
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!