Human induced pluripotent stem cells (hiPSCs) can be genetically reprogrammed to an embryonic stem cell-like state and can provide promising medical applications, such as diagnosis, prognosis, drug screening for therapeutical development, and monitoring disease progression. Despite myriad advances, traditional viral-based reprogramming for generating hiPSCs has safety risks that hinder further practical applications of hiPSCs. In the past decade, nonviral-based reprogramming has been used as an alternative to produce hiPSCs and enhance their differentiation. In addition, the efficiency of nonviral-based reprogramming is generally poor, compared to that of viral-based reprogramming. Recent studies in nanoscale-structured particles have made progress in addressing many applications of hiPSCs for clinical practice. The combination of hiPSCs and nanotechnology will actually act as the therapeutic platform for personalized medicine and can be the remedies against various diseases in the future. In this article, we review recent advances in cellular reprogramming and hiPSC-related research, such as cell source, delivery system, and direct reprogramming, as well as some of its potential clinical applications, including mitochondrial and retinal disease. We also briefly summarize the current incorporation of nanotechnology in patient-specific hiPSCs for future treatments.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368914X685113DOI Listing

Publication Analysis

Top Keywords

human induced
8
induced pluripotent
8
pluripotent stem
8
viral-based reprogramming
8
applications hipscs
8
nonviral-based reprogramming
8
hipscs
7
reprogramming
6
stem cell
4
cell nanotechnology-based
4

Similar Publications

Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

Progressive Increase in Renal Sympathetic Nerve Activity Induced by Cold Exposure.

Hypertension

January 2025

Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Japan.

Background: Exposure to cold environments is linked to cold-induced hypertension due to activated sympathetic nerve activity (SNA) and arterial baroreceptor reflex dysfunction. However, direct measurement of SNA during cold-induced hypertension and changes in baroreflex control of SNA remain unexplored.

Methods: Chronically instrumented rats were exposed to cold temperatures (10 °C) over 4 days after a control period (24 °C), and renal and lumbar sympathetic nerve activities were simultaneously measured during cold-induced hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!