We have used Bi and Ce L3-edges extended x-ray absorption fine structure measurements to study local structure of CeO(1-x)F(x)BiS2 system as a function of F-substitution. The local structure of both BiS2 active layer and CeO1-xFx spacer layer changes systematically. The in-plane Bi-S1 distance decreases (ΔRmax ∼ 0.08 Å) and the out-of-plane Bi-S2 distance increases (ΔRmax ∼ 0.12 Å) with increasing F-content. On the other hand, the Ce-O/F distance increases (ΔRmax ∼ 0.2 Å) with a concomitant decrease of the Ce-S2 distance (ΔRmax ∼ 0.15 Å). Interestingly, the Bi-S1 distance is characterized by a large disorder that increases with F-content. The results provide useful information on the local atomic displacements in CeO(1-x)F(x)BiS2, that should be important for the understanding of the coexistence of superconductivity and low temperature ferromagnetism in this system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/26/43/435701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!