Developmental defects in a Caenorhabditis elegans model for type III galactosemia.

Genetics

Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain

Published: December 2014

Type III galactosemia is a metabolic disorder caused by reduced activity of UDP-galactose-4-epimerase, which participates in galactose metabolism and the generation of various UDP-sugar species. We characterized gale-1 in Caenorhabditis elegans and found that a complete loss-of-function mutation is lethal, as has been hypothesized for humans, whereas a nonlethal partial loss-of-function allele causes a variety of developmental abnormalities, likely resulting from the impairment of the glycosylation process. We also observed that gale-1 mutants are hypersensitive to galactose as well as to infections. Interestingly, we found interactions between gale-1 and the unfolded protein response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256771PMC
http://dx.doi.org/10.1534/genetics.114.170084DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
type iii
8
iii galactosemia
8
developmental defects
4
defects caenorhabditis
4
elegans model
4
model type
4
galactosemia type
4
galactosemia metabolic
4
metabolic disorder
4

Similar Publications

Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction.

View Article and Find Full Text PDF

The nematode Caenorhabditis elegans, widely recognized as a model organism due to its ease of breeding and well-characterized genomes, boasts complete digestive, reproductive, and endocrine systems, as well as conserved signaling pathways shared with mammals. It has become an invaluable resource for metabolomics research, particularly in examining responses to chemical or environmental factors and toxicity assessments. In this article, we provide detailed, step-by-step protocols for cultivating C.

View Article and Find Full Text PDF

Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation.

Biomed Pharmacother

January 2025

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic; Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic. Electronic address:

Intracellular protein aggregation causes proteotoxic stress, underlying highly debilitating neurodegenerative disorders in parallel with decreased proteasome activity. Nevertheless, under such stress conditions, the expression of proteasome subunits is upregulated by Nuclear Factor Erythroid 2-related factor 1 (NRF1), a transcription factor that is encoded by NFE2L1. Activating the NRF1 pathway could accordingly delay the onset of neurodegenerative and other disorders with impaired cell proteostasis.

View Article and Find Full Text PDF

Exploring the challenges of RNAi-based strategies for crop protection.

Adv Biotechnol (Singap)

July 2024

State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

RNA silencing (or RNA interference, RNAi) initiated by double-stranded RNAs is a conserved mechanism for regulating gene expression in eukaryotes. RNAi-based crop protection strategies, including host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS) and microbe-induced gene silencing (MIGS), have been successfully used against various pests and pathogens. Here, we highlight the challenges surrounding dsRNA design, large-scale production of dsRNA and dsRNA delivery systems.

View Article and Find Full Text PDF

Quick Oil Red O staining is a well established method to assay total lipid levels in , but the software to clean up and analyse the images is either laborious, expensive or both. We have developed a process that uses an existing protocol to stain the animals, followed by Magic Select in Paint3D to remove background and then a custom script in Biopython to quantify average pixel intensity animal. The software is free, accessible and relatively easy to use for undergraduate researchers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!