In vivo remodelling of vascularizing engineered tissues.

Ann Biomed Eng

Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada.

Published: May 2015

A critical aspect of creating vascularized tissues is the remodelling that occurs in vivo, driven in large part by the host response to the tissue construct. Rather than a simple inflammatory response, a beneficial tissue remodelling response results in the formation of vascularised tissue. The characteristics and dynamics of this response are slowly being elucidated, especially as they are modulated by the complex interaction between the biomaterial and cellular components of the tissue constructs and the host. This process has elements that are similar to both wound healing and tumour development, and its features are illustrated by reference to the bottom-up generation of a tissue using modular constructs. These modular constructs consist of mesenchymal stromal cells (MSC) embedded in endothelial cell (EC)-covered collagen gel rods that are a few hundred microns in size. Particular attention is paid to the role of hypoxia and macrophage recruitment, as well as the paracrine effects of the MSC and EC in this host response.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-014-1146-xDOI Listing

Publication Analysis

Top Keywords

host response
8
modular constructs
8
response
5
tissue
5
vivo remodelling
4
remodelling vascularizing
4
vascularizing engineered
4
engineered tissues
4
tissues critical
4
critical aspect
4

Similar Publications

Despite recent advances, improvements to long-term survival in metastatic carcinomas, such as pancreatic or ovarian cancer, remain limited. Current therapies suppress growth-promoting biochemical signals, ablate cells expressing tumor-associated antigens, or promote adaptive immunity to tumor neoantigens. However, these approaches are limited by toxicity to normal cells using the same signaling pathways or expressing the same antigens, or by the low frequency of neoantigens in most carcinomas.

View Article and Find Full Text PDF

Cyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse and phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.

View Article and Find Full Text PDF

Unlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!