Phototunable liquid-crystalline phases made of nanoparticles.

Angew Chem Int Ed Engl

Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, 02-089 Warsaw (Poland).

Published: December 2014

The properties of liquid-crystalline (LC) hybrid systems made of inorganic nanoparticles grafted with photosensitive azo compounds are presented. For materials with a large density of azo ligands at the surface, the LC structure can be reversibly melted by UV light, and the return to the LC state does not require the absorption of visible light. For systems with a lower density of azo ligands, UV light causes shortening of the distance between metal sublayers in the lamellar phase. Interestingly, the azo derivatives attached to the nanoparticle surface show very different kinetics of cis/trans conformational change as compared to the free molecules. The cis form of free ligands in solution is stable for days, whereas the isomerization of molecules attached to the nanoparticle surface to the trans form takes only a few minutes. Apparently, owing to the crowded environment, azo ligands immobilized at a metal surface behave as they would in the condensed state.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201407497DOI Listing

Publication Analysis

Top Keywords

azo ligands
12
density azo
8
attached nanoparticle
8
nanoparticle surface
8
azo
5
phototunable liquid-crystalline
4
liquid-crystalline phases
4
phases nanoparticles
4
nanoparticles properties
4
properties liquid-crystalline
4

Similar Publications

In the field of modern nanoscience, the ability to tailor the properties of nanoparticles is essential for advancing their applications. A key approach for achieving this control involves manipulating surface plasmon resonance (SPR) to modify optical properties. This study introduces a novel method for synthesizing gold nanoparticles capped with photoactive liquid crystalline azo ligands, accomplished without reducing agents.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) plays a central role in energy conversion and storage technologies. A promising alternative to precious metal catalysts are non-precious metal doped carbons. Considerable efforts have been devoted to cobalt-doped carbonized polyacrylonitrile catalysts, but the optimization of their catalytic performance remains a key challenge.

View Article and Find Full Text PDF

Herein, we describe a Zn-catalyzed atom-economical, inexpensive, and sustainable method for preparing a broad spectrum of substituted olefins utilizing alcohols as the main precursor. Using a Zn(II) complex [ZnLCl] () of the redox-noninnocent ligand 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (), various ()-olefins were prepared in good yields by coupling alcohols with sulfones and aryl cyanides under an inert atmosphere. Under an aerial atmosphere, vinyl nitriles were isolated in up to 82% yield reacting alcohols with benzyl cyanides in the presence of .

View Article and Find Full Text PDF

Single Step Synthesis of Non-symmetric Azoarenes Using Buchwald-Hartwig Amination.

ACS Omega

November 2024

Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 53210, The Czech Republic.

Aromatic azo compounds stand as a highly sought-after class of substances owing to their extensive array of applications across various fields. Despite their significance, their synthesis often presents challenges, requiring either multistep reactions or being restricted to specific substrate types. In this study, we are showing the universality and mechanistic aspects of a one-step approach for synthesis of nonsymmetrical azoarenes via the Buchwald-Hartwig amination reaction of (pseudo)haloaromatics with arylhydrazines, conducted in the presence of atmospheric oxygen.

View Article and Find Full Text PDF

The bidentate N, N, donor phenyl-azo-naphthaldoxime NpLH, 1 was used to synthesize the ruthenium(II) complex trans-[Ru(NpL)(CO)Cl(PPh)], 2. It has been characterized by SCXRD, electrochemical and spectral studies. Computational analysis indicates that the low-lying π*-LUMO of the complex has substantial azo-character of coordinated ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!