Glycosaminoglycan (GAG)-based hydrogels gain increasing interest in regenerative therapies. To support specific applications, the biomolecular functionality of gel matrices needs to be customized via conjugation of peptide sequences that mediate cell adhesion, expansion and differentiation. Herein, we present an orthogonal strategy for the formation and chemoselective functionalization of starPEG-GAG hydrogels, utilizing the uniform and specific conjugation of peptides and GAGs for customizing the resulting materials. The introduced approach was applied for the incorporation of three different types of RGD peptides to analyze the influence of peptide sequence and conformation on adhesion and morphogenesis of endothelial cells (ECs) grown on the peptide-containing starPEG-GAG hydrogels. The strongest cellular response was observed for hydrogels functionalized with cycloRGD followed by linear forms of RGDSP and RGD, showing that morphogenesis and growth rate of ECs is controlled by both type and quantity of the conjugated peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc500217z | DOI Listing |
Adv Sci (Weinh)
September 2021
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.
Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported.
View Article and Find Full Text PDFBiomaterials
January 2020
Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Fetscherstr, 105, 01307, Dresden, Germany. Electronic address:
Glycosaminoglycan (GAG)-based, biohybrid hydrogels offering far-reaching control over their physical and biomolecular signaling properties have been successfully used in various cell and tissue culture applications. To explore the suitability of the materials for in vivo use, we herein studied the host reaction to in situ-assembling star(PEG)-GAG hydrogel variants upon subcutaneous implantation in immunocompetent C57BL/6J mice for up to 28 days. Specifically, we investigated the immune reaction and the angiogenic response to hydrogels with systematically varied cytokine functionalizations, physical network (and mechanical) properties, cell adhesiveness, and enzymatic degradability.
View Article and Find Full Text PDFBiomaterials
October 2018
Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, 01069 Dresden, Germany. Electronic address:
Glycosaminoglycan (GAG)-based hydrogels were proven highly effective to direct cell fate decisions by modulating the administration of cytokines. The sulfation pattern of the GAG component critically controls its affinity to proteins and thus governs the release of cytokines from GAG-containing gel systems. To apply this principle in the design of in situ assembling materials suitable for cell embedding and injection into tissues, we developed a platform of bio-orthogonally crosslinked star-shaped poly(ethylene glycol) (starPEG)-GAG hydrogels that display variable GAG sulfation patterns.
View Article and Find Full Text PDFSci Transl Med
April 2017
Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany.
Excessive production of inflammatory chemokines can cause chronic inflammation and thus impair cutaneous wound healing. Capturing chemokine signals using wound dressing materials may offer powerful new treatment modalities for chronic wounds. Here, a modular hydrogel based on end-functionalized star-shaped polyethylene glycol (starPEG) and derivatives of the glycosaminoglycan (GAG) heparin was customized for maximal chemokine sequestration.
View Article and Find Full Text PDFBioconjug Chem
November 2014
Leibniz-Institut für Polymerforschung Dresden e.V. , Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany.
Glycosaminoglycan (GAG)-based hydrogels gain increasing interest in regenerative therapies. To support specific applications, the biomolecular functionality of gel matrices needs to be customized via conjugation of peptide sequences that mediate cell adhesion, expansion and differentiation. Herein, we present an orthogonal strategy for the formation and chemoselective functionalization of starPEG-GAG hydrogels, utilizing the uniform and specific conjugation of peptides and GAGs for customizing the resulting materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!