Phasins are proteins associated to intracellular polyhydroxyalkanoate granules that affect polymer accumulation and the number and size of the granules. Previous work demonstrated that a phasin from Azotobacter sp FA-8 (PhaPAz ) had an unexpected growth-promoting and stress-protecting effect in Escherichia coli, suggesting it could have chaperone-like activities. In this work, in vitro and in vivo experiments were performed in order to investigate this possibility. PhaPAz was shown to prevent in vitro thermal aggregation of the model protein citrate synthase and to facilitate the refolding process of this enzyme after chemical denaturation. Microscopy techniques were used to analyse the subcellular localization of PhaPAz in E. coli strains and to study the role of PhaPAz in in vivo protein folding and aggregation. PhaPAz was shown to colocalize with inclusion bodies of PD, a protein that aggregates when overexpressed. A reduction in the number of inclusion bodies of PD was observed when it was coexpressed with PhaPAz or with the known chaperone GroELS. These results demonstrate that PhaPAz has chaperone-like functions both in vitro and in vivo in E. coli recombinants, and suggests that phasins could have a general protective role in natural polyhydroxyalkanoate producers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.12636 | DOI Listing |
J Cardiovasc Transl Res
December 2024
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.
View Article and Find Full Text PDFSci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFSci Rep
December 2024
Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea.
Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China.
Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!